Using INRIX Data in Iowa

Kyle Barichello, Iowa DOT Skylar Knickerbocker, In Trans

Institute for Transportation

	valid_CST_CDT	air_tmp_			wind_sped_kts		
	2013-05-19 18:09:00-05:00	None	None	169.9	20.4522	23.53597147	25.4
	2013-05-19 18:15:00-05:00	None	None	161	15.7652	18.14226819	20.7
	2013-05-19 18:21:00-05:00	None	None	171.6	16.8609	19.40317723	20.7
	2013-05-19 18:27:00-05:00	None	None	172.6	13.9043	16.00078271	20.7
	2013-05-19 18:30:00-05:00	None	None	174.4	12.3739	14.23962984	16.1
	2013-05-19 18:33:00-05:00	None	None	171.6	13.2435	15.24034765	16.1
	2013-05-19 18:39:00-05:00	None	None	165.6	12.1826	14.01948573	14.5
	2013-05-19 18:42:00-05:00	None	None	158.8	9.91304	11.40772272	12.9
	2013-05-19 18:45:00-05:00	None	None	157.1	8.41739	9.686559435	11.4
Ē.	2013-05-19 18:51:00-05:00	None	None	147.8	9.09565	10.4670871	12.9
	2013-05-19 18:54:00-05:00	None	None	149.8	11.1739	12.8586945	16.1
	2013-05-19 18:57:00-05:00	None	None	155.8	8.66087	9.966751215	9.87
	2013-05-19 19:03:00-05:00	None	None	280.5	37.8609	43.56954568	65.
	2013-05-19 19:06:00-05:00	None	None	316.4	42.713	49.15324265	58.1
	2013-05-19 19:09:00-05:00	None	None	286.4	28.2348	32.49202761	42.5

What is probe data?

What is INRX data?

INRIX Data Overview

- Purchased traffic data
- Covers Interstates, State Highway, some local roads
- Speed and Travel Time data provided every 1 minute

Institute for Transportation

Analytics of Restation Data

Data Analytics

TMC vs XD

TMC Data

- Industry standard road segmentation
- Defined by a consortium
- Historical back to 2013 for Iowa DOT
- Issues
 - Long Segments
 - Gaps
 - Overlap

XD Segments

- Developed by INRIX
- Covers all FRC 1-2-3 Roads
- Used for real-time analysis
 - Can also capture stream
- Typically 1-1.5miles

Institute for Transportation

Breaks at intersection and interchanges

Quick Explanation

- FHWA defines as:
 - *"Travel time reliability measures the extent of this unexpected delay."*
 - "the consistency or dependability in travel times, as measured from day-to-day and/or across different times of the day."
- Expected vs. experienced
- Accounting for variability included planning trips for:
 - Time of day
 - Weather Events
 - Holidays and many others
- Important because it quantifies the benefits of traffic management & operations activities.

What do travelers care about?

- Selection of reliability and mobility measures includes an assessment on what travelers value the most
- Summarizing congestion effects
 - Duration
 - length of time congestion affects system
 - Extent
 - number of people or vehicles affected
 - Intensity
 - severity of congestion from travelers perspective
 - Variation
 - Recurring delay

Traffic Data Services

- Vendors
 - INRIX, TomTom (Tele Atlas), & HERE (NokiaNavteq)
- FHWA National Performance Management Research Data Set (<u>NPMRDS</u>)
 - Previously HERE now INRIX
- Iowa DOT INRIX Contract
 - 1 year guaranteed option to extend up to three more additional years

Types of Reliability measures

Measures of Typical Delay

- Travel Time (TT) = distance / speed
- Travel Time Index (TTI) = Average travel time / free-flow travel time

Measures of Travel Time Reliability

- **Buffer Time (BT)** = 95th percentile Travel Time Average Travel Time
- **Buffer Time Index (BTI)** = Buffer Time / Average Travel Time
 - i.e. Measure of trip reliability that expresses the amount of extra "buffer time" needed to be on time for 95% of the trips

Combined Measures

- **Planning Time (PT)** = Average Travel Time + Buffer Time (95th percentile TT)
- **Planning Time Index (PTI)** = Planning Time / Free-flow Travel Time
 - i.e. If the PTI is 1.60, for a 15 minute trip in light traffic, the total time that should be planned for the trip is 24 minutes (15* 1.60 = 24 minutes).

Getting clear on use of Probe data

Step 1 – Determine how measures will be used

- Quantify benefits
- Compare alternative scenarios

• Step 2 – Develop a plan based on users

• Travel modes, trips, times of day, peak periods, frequency, reliability calculations etc..

• Step 3 – Collect and process data

- Using INRIX and ITS systems
- Quality Assurance

• Step 4 – Calculate reliability measures

- 95th percentile travel Buffer times, Travel time index, planning time index
- Congestion frequency

• Step 5 – Communicate effectively

- How to communicate the data (ex. report, dashboard, etc..)
- Graphics and relate to travelers experience

INRIX at the Iowa DOT

Iowa DOT Current Uses of INRIX

• Real-time data

- Main users Traffic Operations
- Incident detection alerts
- Assist DOT Ops Center balancing traffic among diversion routes
- Travel Times (rural and urban)
- Historic data
 - Traffic Management Systems and Operations (TSMO)
 - Value, Condition and Performance analysis (VCAP)
 - Yearly/Monthly corridor reports
- INRIX analytics dashboard
 - <u>http://www.inrixtraffic.us/Analytics.aspx</u>

_									
\mathcal{A}	А	В	С	D	E	F	G	Н	
									Fr
					Average	Average	Confidence		Тг
1	TMC Code	Distance	Date_Time	Speed	Speed	Travel Time	Score	C Value	Ti
06	118N04892	0.3386195	1/1/2013 16:00	66.77	65	0.3	28.67	83.63	
07	118N06499	0.643845	1/1/2013 16:00	65	65	0.01	20	0	
08	118N06500	0.6437891	1/1/2013 16:00	66.52	65	0.58	25.67	54	
09	118N06501	0.5873473	1/1/2013 16:00	64.73	65	0.54	22.67	25	
10	118N09882	0.6821419	1/1/2013 16:00	67.07	65	0.61	23.83	32.97	
11	118P04888	0.9250658	1/1/2013 16:00	65.25	65	0.85	23.67	35	
12	118P04890	0.6702793	1/1/2013 16:00	65.28	65	0.62	23.67	35	
13	118P04891	0.0580698	1/1/2013 16:00	65.25	65	0.05	22.5	23.33	
14	118P04892	0.3462254	1/1/2013 16:00	65.27	65	0.32	23.67	35	
15	118P06499	0.627962	1/1/2013 16:00	50	50	0.01	20	0	
16	118P06500	0.6237675	1/1/2013 16:00	64.97	65	0.58	23.33	33.25	
17	118P09882	0.6847828	1/1/2013 16:00	65.77	65	0.62	24.5	45	
18	118+04890	2.5024399	1/1/2013 17:00	65.67	65	2.29	23.83	38.07	
19	118+04891	1.6345989	1/1/2013 17:00	67	65	1.46	24.33	38.8	
20	118+04892	0.4182208	1/1/2013 17:00	65.47	64	0.38	24.33	42.8	
21	118+06500	5.8113204	1/1/2013 17:00	65.2	65	5.35	24.83	46.67	
22	118+06501	3.0014241	1/1/2013 17:00	65.28	65	2.76	24	40	
23	118+09877	4.4526355	1/1/2013 17:00	59.17	61	5.29	25.67	55	
24	118+09878	2.3663409	4 /4 /2010 17 00	~~ **		1.10		21.67	
25	118+09879	2.885533	Confidence sco	ore: a s	simple con	fidence factor	. The three p	ossible va	alues are:
26	118+09880	1.0582442	30 - high confi	dence,	based on	real-time tim	e data for th	at specific	segment
27	118+09881	6.2882635	20 - medium d	onfide	nce, based	on real-time	data across	multiple s	segments an
28	118+09882	6.6021327	a combination	of exp	ected and	real-time data	9		
29	118+09883	3.7186067	10 - lower cont	fidence	, based pr	imarily on his	torical data		
30	118+09884	5.4696125							
31	118+09885	2.1111568	C-Value: India	star th	e orobabili	ty that the cu	reat araba r	anding re-	orecepts the
32	118+09887	4.8631696	c value: muici	ates th	e probabili	historic tread	This velue	is achieved	nesents the
33	118+11350	0.6514012	conditions base	ed on r	ecent and	nistoric trends	s. This value	is only us	eo when the
34	118+11351	4.7480553	score is 30. (0	= low	probability,	100 = high p	probability)		
35	118+11352	6.8649911	1/1/2013 17:00	59.45	59	6.93	23.5	35	

Massive Raw Data Downloader

- Excel File with information tied ٠ to TMC Code shapefile
- Speed is estimated mean speed ۲ for the roadway
- Average Speed is the historical ۲ average mean speed for that segment
- To Map, Join by TMC Code ٠ Identifier

nd/or based on actual roadway confidence

Bottlenecks Analysis

Bottleneck Ranking

1. Select one or more roads

Road	Region	List of TMC codes	Saved TMC Set				
States a	and countie	es All		-			
	Direction	ns Northbound and	3 others	-			
	Zip code	es Example: 20742	,20904				
R	Road classes Interstate and 2 others			-			
				O Add region			
Your sel	lected road	ds 🕕		🗙 Remove all			
× ~	$ imes$ \smile Northbound, southbound, eastbound, and westbound interstates, US						
				📔 Save as TMC set			

2. Selected a date range

01/01/2013 📅 - 03/31/2013 📅 🕕

Bottleneck Ranking

骗 New search Bottleneck locations from Northbound, southbound, eastbound, and westbound interstates, US routes, and state routes in IA (5897 tmcs) between January 1, 2013 and March 31, 2013 (968 total) 👔 Expertic CSV

Rank	🗌 Map	Location	Average duration	Average max length (miles)	Occurrences	Impact factor
1		IA-60 N @ CR-52/CR-2	2 d 17 h 26 m	5.12	8	160,921
2		IA-60 S @ US-75	28 m	5.24	125	18,330
3		IA-163 W @ US-65	5 h 23 m	0.76	68	16,665
4		US-218 N @ IA-103/CR-J40/160TH ST	33 m	6.08	83	16,647
5		CR-E41 W @ DAKOTA AVE	46 m	2.75	126	15,914
6		US-65 N @ I-80/US-6/NE HUBBELL AVE/EXIT 142	33 m	0.84	328	9,105
7		CR-E41 E @ ELWOOD DR	33 m	2.33	118	9,055
	-					

Occurrences

Spiral Table Report to CSV

Freight Bottlenecks

Value, Condition, and Performance (VCAP analysis) Highway improvement candidates

Pages 183 – 193 of the document

Ę

15

Urban Areas

Traffic Systems Management and Operations (TSMO-ICE OPS)

	~	5	· · ·		-	· · · ·			•			-	 	
	ID	Corridor Name	Length (mi)	All Bottlenecks per mile (10%)	Freight Bottlenecks per mile (10%)	Incident Frequency per mile (10%)	Craith Rate (15%	Buffer Time Index (BTI) (10%)	Event Center buffer mileage (5%)	Weather Sensitive Corridor mileage (10%)	AADT (20%)	ICE rating (5%)	Composite Rating	Rank
	395	I-235 (jct of IA 28 to jct of US 69)	5.7	1	10	4	1	5	1	10	1	5	38.5	1
	463	I-35/80 (west jct of I-35/80 to US 6)	2.1	4	1	3	3	٥	7	10	2	4	41.5	2
	394	I-235 (jct of I-35/80 to jct of IA 28)	5.1	1	10	1	5	6	1	10	3	6	45.5	3
	368	I-80 (Nebraska border to jct of I-29)	3.5	6	1	5	4	8	9	10	5	1	53.5	4
	263	I-29 (South Dakota border to jct of US 20/I-12	8.4	1	10	3	5	1	9	10	9	5	59	5
	406	I-35/I-80 (jct of IA 415 to jct of I-35)	2.0	8	5	8	3	8	7	10	4	2	60	6
	261	I-129 (full route)	0.3	1	10	6	1	4	10	10	9	5	61	7
	407	I-35/80 (jct of IA 141 to jct of IA 28)	3.9	7	4	8	8	9	3	10	3	3	63	8
	408	I-35 (jct of I-80/I-235 to jct of IA 160)	3.1	8	4	7	7	8	5	10	4	4	63.5	9
	281	I-235 (jct of US 69 to west jct of I-35/80)	4.4	5	10	7	6	6	2	10	5	5	64	10
1	275	I-74 (full route)	5.2	1	10	7	5	1	10	10	8	7	64.5	11
	462	I-35/80 (from jct of IA 28 to IA 415)	4.0	9	6	8	8	9	3	10	2	2	64.5	11
	277	I-35/80 (jct of US 6 to jct of IA 141)	2.5	10	9	7	8	8	7	10	2	2	68	13
i	440	I-380 (jct of US 20 to start of US 218)	7.3	7	2	9	7	2	10	10	8	8	70	14
i	430	I-35 (jct of IA 5 to jct of I-80/I-235)	4.7	8	5	10	6	7	3	10	6	6	70.5	15
1	272	I-80 (east jct of I-35/80 to jct of IA 14)	28.5	10	8	9	8	8	1	4	7	5	72.5	16

Buffer Time Index calculation

Switch to...

Performance Summaries - Using INRIX data

Q New search		t	l2 tmcs			
Selected time ranges	2016 Southbound	d 2016 Northbound				
6:00 AM - 10:00 AM	Buffer time (minute	es) (Buffer index)	Planning time (m	inutes)
12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM		6:00 AM - 10:00 AM		6:00 AM - 10:00 AM		6:00 AM - 10:00 AM
	Monday	0.17	Monday	0.06	Monday	2.94
6:00 AM 10:00 AM	Tuesday	0.21	Tuesday	0.08	Tuesday	2.97
	Wednesday	0.17	Wednesday	0.06	Wednesday	2.93
🕂 Add another time range	Thursday	0.15	Thursday	0.05	Thursday	2.92
Submit	Friday	0.19	Friday	0.07	Friday	2.97
	Saturday	0.2	Saturday	0.07	Saturday	2.97
	Sunday	0.18	Sunday	0.06	Sunday	2.97
	Weekends	0.19	Weekends	0.07	Weekends	2.97
	Weekdays	0.18	Weekdays	0.07	Weekdays	2.95
	All Days	0.19	All Days	0.07	All Days	2.97
	Planning time index	c	Speed (mph)		Travel time (min	ıtes)
		6:00 AM - 10:00 AM		6:00 AM - 10:00 AM		6:00 AM - 10:00 AM
	Monday	1.06	Monday	60.48	Monday	2.77
	Tuesday	1.08	Tuesday	59.98	Tuesday	2.79
	Wednesday	1.06	Wednesday	60.42	Wednesday	2.77
	Thursday	1.06	Thursday	60.57	Thursday	2.77
	Friday	1.07	Friday	60.39	Friday	2.77
	Saturday	1.08	Saturday	59.65	Saturday	2.81
	Sunday	1.08	Sunday	59.05	Sunday	2.84
	Weekends	1.08	Weekends	59.35	Weekends	2.82
	Weekdays	1.07	Weekdays	60.37	Weekdays	2.78
	All Days	1.08	All Days	60.07	All Days	2.79

. . . .

Other

Iowa DOT Interstate Corridor Analysis

I-80 Rura	0 Rural Corridor in Iowa County near Williamsburg			I-380 from I-80 to US 30					
		Spring	[Spring		
		Avg_TT	PTI	PTI Avg_TT			Avg_TT	PTI	PTI Avg_TT
DM	EB	24.76	1.070	26.27	PM	NB	14.74	1.096	16.00
FIVE	WB	24.47	1.073	26.05	E IVI	SB	14.49	1.103	15.71
0.04	EB	24.98	1.075	26.72	0.04	NB	14.65	1.084	15.77
AW	WB	24.71	1.076	26.52	AW	SB	14.57	1.095	15.72
		Fall				Fall			
		Avg_TT	PTI	PTI Avg_TT			Avg_TT	PTI	PTI Avg_TT
DM	EB	24.77	1.103	26.55	DM	NB	14.72	1.103	16.09
FIVE	WB	25.20	1.098	27.62	E IVI	SB	14.84	1.117	16.44
AM	EB	25.01	1.084	26.94	0.04	NB	14.49	1.096	15.70
AW	WB	24.74	1.094	26.80	AM	SB	14.66	1.108	16.06
	Winter			Winter					
		Avg_TT	PTI	PTI Avg_TT			Avg_TT	PTI	PTI Avg_TT
DM	EB	24.92	1.094	26.60	PM	NB	15.03	1.266	19.98
FIVE	WB	24.81	1.080	26.69	E IVI	SB	15.15	1.206	17.64
AM	EB	25.15	1.079	27.11	AM	NB	14.93	1.164	17.26
AW	WB	25.00	1.092	27.32	AM	SB	14.95	1.224	17.87
		Summe	er			Summer			
		Avg_TT	PTI	PTI Avg_TT			Avg_TT	PTI	PTI Avg_TT
PM	EB	24.76	1.070	26.27	PM	NB	14.78	1.049	15.77
	WB	24.47	1.073	26.05		SB	14.61	1.084	15.74
AM	EB	24.84	1.071	26.42	AM	NB	14.35	1.078	15.33
	WB	24.54	1.068	26.15		SB	14.27	1.080	15.28
		2014 aver	age				2014 aver	age	_
		Avg_TT	PTI	PTI Avg_TT			Avg_TT	PTI	PTI Avg_TT
PM	EB	24.80	1.084	26.42	PM	NB	14.82	1.128	16.96
1.141	WB	24.74	1.081	26.60	1.141	SB	14.77	1.128	16.38
4.14	EB	25.00	1.077	26.80	0.04	NB	14.60	1.106	16.01
AIVI	WB	24.75	1.083	26.70	AIVI	SB	14.61	1.127	16.23

Peak hour buffer index factors Hampton Roads MPO Study

Buffer Index

Ŧ

Metro Rank T12 Months = This Month This Month LY Honolulu 20.1 1 35.6 28.7 Los Angeles 2 29.8 32.2 31.6 3 San Francisco 27.9 25.2 28.5 Austin 4 23.3 18.7 17.5 Bridgeport 5 22.1 25.2 20.9 New York 6 20.7 17.2 19.6 San Jose 7 20.6 21.3 17.2 Seattle 8 20.3 19.6 25.1 Boston 9 18.7 20.6 17.8 Washington D.C. 10 14.4

17.3

17.2

Biggest Movers: YTD vs. Last Year

Provo	1	284%	
Poughkeepsie	2	176%	
Toledo	3	111%	1
Sarasota	4	108%	1
Greensboro	5	104%	1
Augusta	6	72%	1
Dayton	7	72%	1
Las Vegas	8	67%	1
Buffalo	9	67%	1
Indianapolis	10	65%	-

Top 25 Metros: Trailing 12 months from July 2014

Biggest Movers: Current Month vs. Last Year

Provo	1	765%	4
Poughkeepsie	2	327%	
Sarasota	3	194%	1
Salt Lake City	4	164%	1
Boise City	5	143%	
Richmond	6	136%	1
Las Vegas	7	127%	1
Ogden	8	115%	1
Louisville	9	95%	1
Phoenix	10	95%	١.

Possible Future Use

Dashboarding

Monthly, hourly, peak AM/PM ullet

Traffic & Cameras	Projects	Business	Environment	Maps & Data	
-------------------	----------	----------	-------------	-------------	--

You are Here: Home > Traffic > Seattle > Travel Times > Best Time to Leave

Best Time To Leave

Case Study Example Washington DOT

Online trip planner to check current travel times

These times are for highway travel only, please allow extra time to get to the highway and to reach your destination after exiting.

Challenges & Questions

- How do we process and store all of this data?
- Expensive to maintain
- Which time frame of data do we use for analysis?
 - AM/PM Peak Hours
 - Weekly
- How can we combine ATR data and other sensor data with INRIX probe datasets?
- Non-broken out truck data in the INRIX dataset
- New NPMRDS Performance Measure requirement (Reliability measures on Interstates)
- Finding the proper way to use INRIX data across multiple platforms
- Accuracy issues off Interstate
- Few application studies out there

Concluding Thoughts

- There have been successes using primarily cell phone probe data sources like INRIX
- Loop detectors and other sensors are most common for corridor studies
 - Adding a large amount of sensors is fiscally within reach
 - Combination between the two is ideal for measuring reliability
- Travel time systems must be operationally reliable to be used effectively
 - Accuracy is very important to the public for travel time messaging
- SHRP Researchers found reliability measures in transportation planning should
 - Be incorporated as a system wide goal
 - Be used as a tool to help prioritize roadway segments using Travel Time measures
- Data processing is the biggest concern Who will address this?

Using INRIX Data (Traffic Operations)

- Mobility Reporting
- Performance Measures
- Real-time monitoring/alerting
- After-action review

- Understand where performance measures most accurate
- Monitoring in real-time
 - Understand where latency may be higher

Institute for Transportation

Real-time Data

Delta Speed

 Difference in speed between segments to identify back of queue

Traffic anomaly detection

 Using outlier analysis to detect incidents

IOWA STATE UNIVERSITY

Institute for Transportation

Kirksville

Reedsburg

Real-time Data

Congested Hours

- Top 10 most congested
- Metro and Interstate comparison
- Corridor congested hours
- Speed Percentage
- % increase in typical travel time (BTI)
 - Yearly
 - Daily

Congested Hours

- Calculate hours of speed less than 45 mph
- Look at each minute of data
 Congested if speed is less than 45 mph and real time score
- Summarized data by time of day, day of week and month

Institute for Transportation

Top 10 Most Congested - 2013

Interstate 80 Westbound

The top congested segment in Iowa was located in the Quad Cities on Interstate 80 westbound at the Illinois border. This half mile segment of road had 378.6 hours of congestion in 2013 which was primarily between June and November. Congested peaked with over 90 hours a month during both July and August. Construction on the Mississippi River bridge likely caused the congestion. Congestion primarily occurred between 9 am and 6pm with a majority during the PM Peak. .Friday was the peak of congestion while all other days had consistent congestion hours.

Interstate 29 Northbound

Up to 326.3 hours of congestion was experienced between Exit 141 (Sergeant Bluffs) and Exit 147A (Floyd Blvd) on I-29 northbound in Sioux City during 2013. This 5.8 miles of road had the most congestion between the months of August and October and 66.3 hours of congestion in September. The congestion was fairly consistent across the time of day and for all days of the week but was slightly higher between 9 am and 6 pm.

2013-2015 Mobility Report

Construction

IOWA STATE UNIVERSITY

Institute for Transportation

Percentage increase in typical travel time

Buffer time index

Percentage increase in the typical travel time to arrive at destination with 95 percent confidence

Calculated daily and yearly

- All time periods
- AM Peak
- PM Peak

2013-2015 Mobility Report

Reliability

IOWA STATE UNIVERSITY

Institute for Transportation

Questions

Kyle Barichello kyle.Barichello@iowadot.us

Skylar Knickerbocker sknick@iastate.edu

Institute for Transportation