AN UPDATE ON THE lowa Travel Analysis Model	
Presented to the	
Midwest Travel Model User Group (MTMUG)	
by	
Louis Berger Wilbur Smith Baker Corp	
July 08, 2009	
lowa Department of Transportation	nt on

Content

- □ Background on iTRAM
- □ Status Report
- Model Validation
- Model Implementation
 - Running iTRAM

iTRAM Timeline

- □ Architecture Completed April 2007
- Trip Generation from 2001 National Household Travel Survey – Summer 2008
- Network Transformation (from Iowa GIMS) Fall 2008
- □ Calibration Work Winter 2009
- □ Validation July 2009

Tasks

Task	Description
1	Design the Iowa Travel Analysis Model Approach (Architecture)
2	Build traffic analysis zone (TAZ) structure.
3	Obtain 2005 LRS network from the Iowa DOT, develop/check network attributes: unique ID, length, direction, name, functional class, number of lanes, area type, capacity, speed, traffic (AADT), truck counts, screen lines and summary variables for reporting.
4	Work with Iowa DOT staff to collect/classify socioeconomic data by TAZ for base year and future years - Census block TAZ allocation for households, detailed employment information within Iowa, and more aggregated information in the buffer zones.
5	Develop a three-step truck submodel
6	Conduct trip generation for internal trips for three purposes.
7	Conduct gravity model evaluation and evaluate for both autos and trucks.
8	For both auto & truck: combine gravity model matrices, special generator trips and long distance periodic trips to get total trip tables.
9	Run truck and auto traffic assignments.
10	Tabulate state, county and corridor specific measurements of accuracy. Develop reporting mechanism appropriate for Iowa DOT needs.
11	Write GISDK to automate the traffic model at each step; include future years.

Air Passenger Model

Area Type

- Three Area Types: Urban, Rural, Town/Suburban
- □ Used for Trip Rate Stratification
- □ Used for Link Speed & Capacity Lookup
- □ Use for Centroid Connector Speeds
- Used for Terminal Times

Recent Activities

- □ Developed GUI (Baker)
- □ Calibration Workshops (NY + PA)
- □ Incorporated Iowa DOT Network (CC-check)
- □ Fine-Tune Calibration | Validation
- Developed Post-Process Mechanism

Model Calibration (24 hr – ADT)

- □ By Functional Class and Area Type
- By Volume Groups
- Major Route's Statistics
- □ Truck Model

By Functional Class and Area Type

Selection	Observation	RMSE	% RMSE	Sum of Counts	Sum of Flows	% Flow / Counts
All Counts	68,400	3,113	92	231,238,054	234,125,132	1.2
Urban Interstate	968	6,831	30	22,067,195	22,270,562	0.9
Urban Principal Arterial	6,408	5,047	58	55,915,184	55,795,749	-0.2
Urban Minor Arterial	8,889	4,974	88	50,458,026	50,374,959	-0.2
Urban Major Collector	7,935	3,609	144	19,828,785	18,872,122	-4.8
Rural Interstate	1,214	2,298	26	10,697,701	11,211,113	4.8
Rural Principal Arterial	8,745	2,784	70	34,548,113	34,709,758	0.5
Rural Minor Arterial	9,751	1,572	77	19,809,601	19,412,779	-2.0
Rural Major Collector	24,490	1,162	159	17,913,449	21,478,090	19.9

By Volume Groups

Selection	Observations	RMSE	% RMSE	Sum of Counts	Sum of Flows	% Flow / Counts
All Features	68,402	3,113	92	231,238,259	234,125,132	1.2
0 - 2000	35,926	1,375	168	29,400,288	37,227,226	26.6
2000 - 4000	13,966	2,760	96	40,267,447	42,819,317	6.3
4000 - 6000	7,078	3,744	77	34,569,316	33,221,459	-3.9
6000 - 8000	4,105	4,902	71	28,433,983	26,934,095	-5.3
8000 - 10000	2,629	5,325	60	23,478,504	22,490,969	-4.2
10000 - 15000	3,053	5,932	49	36,920,843	33,488,059	-9.3
15000 - 20000	865	6,683	39	14,659,744	14,572,590	-0.6
20000 - 25000	315	8,424	38	6,973,047	6,709,800	-3.8
25000 - 30000	181	7,465	27	4,947,100	5,032,557	1.7
30000 - 35000	89	8,848	28	2,856,297	2,871,064	0.5
35000 - 40000	80	10,232	27	3,017,526	2,807,839	-6.9
40000 - 45000	48	5,345	13	2,000,405	2,016,264	0.8
45000 - 50000	35	10,931	23	1,663,856	1,788,055	7.5
50000 +	36	21,656	38	2,071,903	2,161,673	4.3

Model Accuracy (24 hr – ADT)

lowa Department of Transportation

æ

State's Major Routes Statistics

Selection	Length (mi)	Observation	RMSE	% RMSE	Sum of Counts	Sum of Flows	% Flow / Counts
All Screen lines	1,758	2,322	2,334	28	19,686,445	20,071,263	2.0
US 6	42	52	1,559	45	178,263	195,839	9.9
US 18 West	58	83	2,344	50	387,852	307,520	-20.7
US 18 East	47	62	1,143	29	248,585	221,080	-11.1
US 20	169	218	1,762	29	1,324,268	1,133,294	-14.4
US 30 West	39	89	791	20	343,649	322,543	-6.1
US 30 East	46	66	1,560	33	309,197	377,282	22.0
I 35 North of 80	261	304	3,270	26	3,754,887	4,324,505	15.1
I 35 South of 80	129	102	1,611	20	836,285	920,325	10.0
I 80 East of 35	305	347	3,608	23	5,423,290	5,738,757	5.8
I 80 West of 35	225	302	1,885	17	3,333,038	3,390,648	1.7
US 61	94	164	907	23	645,390	549,868	-14.8
I 380	68	78	1,695	21	642,650	534,409	-16.8
US 71	106	105	1,219	36	355,919	341,867	-3.9
SR 60	33	62	2,326	52	278,811	195,913	-29.7
US 34	133	288	1,985	35	1,624,361	1,517,413	-6.6

Truck Model Validation: By Functional Class and Area Type

Iowa Department of Transportation

æ

Selection	Observation	RMSE	% RMSE	Sum of Counts	Sum of Flows	% Flow / Counts
All Counts	27,237	460	78	16,064,326	16,465,568	2.5
Urban Interstate	968	1,261	42	2,912,043	2,654,148	-8.9
Urban Principal Arterial	6,027	469	91	3,119,590	3,247,690	4.1
Urban Minor Arterial	1,218	258	83	380,134	313,091	-17.6
Urban Major Collector	90	364	70	47,071	60,616	28.8
Rural Interstate	1,214	736	28	3,219,390	3,087,078	-4.1
Rural Principal Arterial	8 726	457	90	4 410 496	5 172 066	17.3
	0,720			.,		
Rural Minor Arterial	8,631	178	80	1,926,517	1,840,696	-4.5
Rural Major Collector	363	399	295	49,085	90,183	83.7

Truck Model Validation: By Volume

Selection	Observations	RMSE	% RMSE	Sum of Counts	Sum of Flows	% Flow / Counts
All Features	27,851	484	81	16,649,174	16,958,687	1.9
0 to 1000	24,729	365	99	9,091,219	9,933,305	9.3
1000 to 2000	1,686	661	47	2,346,810	2,557,912	9.0
2000 to 3000	603	796	32	1,477,416	1,485,744	0.6
3000 to 4000	346	834	24	1,226,047	1,038,706	-15.3
4000 to 5000	291	1,303	29	1,309,401	1,080,774	-17.5
5000 +	200	2,628	44	1,206,281	871,812	-27.7

There are no standards for Truck Models in Statewide Models, however generally ~15% error is acceptable. The model could be greatly improve by obtaining information about special truck generators.

Truck Model Accuracy

Issues/Challenges with Validation

- Universal ADT Data almost every link segment has an ADT
- Strong impact of buffer zones though telescoping out in size from Iowa TAZ, they are larger than the Iowa TAZs
- □ Blending short and long household trips
- Blending internal (medium and heavy) and external truck trips

Model Implementation

iTRAM		iΤ	RA	M r
Interface	Iowa Statewide	Travel Mo	del	×
Allinput	i 1 Iowa Trav	ation RAI el Analy:	<mark>V]</mark> sis Mode	əl
Base2005	Scenarios Base Year			
	Stop after s	age	Model Table Setup	2 ;
	📅 ÷ 🚍	Trip Ger	neration	
		Highwa	y Skims	
	~~	Trip Dis	tribution	
		Traffic As	signment	
		Post Pro	ocessing	
		Quit		
			v 2009060	18

1odel Scenario Mana	ager				×
Scenario	Folder	Date	9	Steps	
Base Year	D:\iTRAM\Base2005\	Tuesday	Mar 24 20	Trip Generation	<u> </u>
Test2020	D:\iTRAM\Test2020\	Mon Jun	29 2009 (Trip Distribution	
Scenarios Lucus Elle	[Output Fig.]		F	Traffic Assignment Post Processing	Ŧ
Scenarios Input Files	s Uutput Files				
Description		Copu			
Test 2020 Run		Delete ort by Date ort by Name			
			OK	Cane	:el

iTRAM requires TransCAD Version 5.0 (Build 1705).

Model Directory

Let's look at iTRAM!!

How Can MPOs Use the iTRAM?

- □ Truck and Car External-External Trips
- Truck and Car External-Internal and Internal-External Trips
- Potential Modeled Traffic Comparison
- Potential Source of Future SE Data

Questions and Comments

- What elements from the iTRAM would best serve your group or agency's needs?
- □ What specific MPO effort are you involved with for 2009-2010?
- What technical concerns are most important to you?

QUESTIONS?

