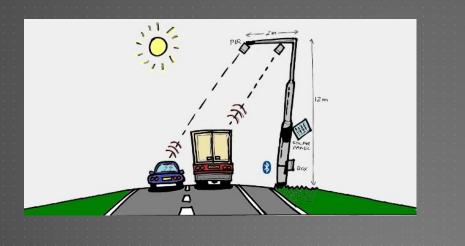
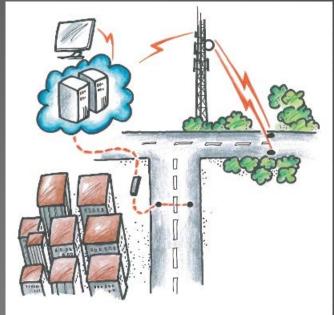


SYSTEMS PLANNING IOWA DEPARTMENT OF TRANSPORTATION

TRAFFIC MONITORING PROGRAM IN IOWA


Phil Mescher, Forecasting, Modeling & Telemetrics Team LeaderOffice of Systems PlanningIowa Department of Transportation


TRAFFIC MONITORING PROGRAM IN IOWA

> Telemetrics
> Traffic Monitoring Program Areas
> Data Collection Methods
> Data Output Examples
> Traffic Monitoring Data Products
> Sources
> Questions

TELEMETRICS

- Telemetrics is a technology that involves the automatic measurement and transmission of data from remote sources.
- The process of measuring data at the source and transmitting it automatically is called *telemetry*.

WHAT DATA IS COLLECTED?

 Data and information on traffic are the foundation to many highway and transportation functions.
 Volume of Traffic

> Vehicle Classification

Vehicle Speed

Vehicle Weight

WHY DO WE COLLECT TRAFFIC DATA?

Federal Legislation

- Federal Highway Administration (FHWA) under United States Code of Federal Regulations (CFR) title 23, 420.105(b), which requires States to provide data that supports FHWA's reporting responsibilities to Congress and to the public.
- Traffic data reported under this Federal regulation is submitted as part of the annual Highway Performance Monitoring System (HPMS) report from each State.
- MAP-21 Major Focus on Performance Measurement

Supports Monitoring and Analysis for:

- Highway/Bridge Design
- Asset Management
- Performance Management
- Traffic Forecasting & Modeling
- Safety Analysis

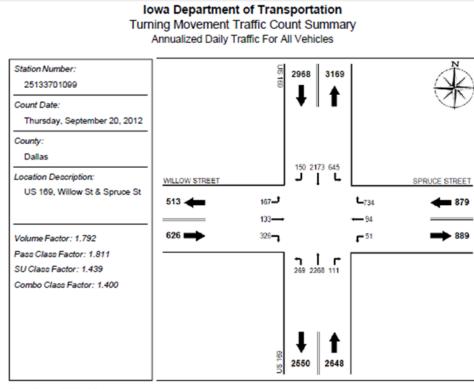
- Maintenance Activities
- Traffic Operations
- Environmental Analysis
- Finance
- Engineering Economics

TRAFFIC MONITORING DATA COLLECTION METHODS

There are two general methods used to collect traffic data:

Manual – Refers to visually observing number, classification, vehicle occupancy, turning movement counts, or direction of traffic. Methods include using tally sheets or electronic counting boards.

Automatic – Refers to the collection of traffic data with automatic equipment designed to continuously record the distribution and variation of traffic flow in discrete time periods (e.g. by 5 min., 15 min., hour of the day, day of the week, and month of the year from year to year). Automatic methods may include both permanent and portable counters.


MANUAL COUNTS

Typically used in places where equipment will not work.
 Counting vehicle turning movements or vehicle occupancy are good examples.

Raw Data-All Vehicles:

	N Leg			E Leg				S Leg	1	W Leg			
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
07:00	70	128	6	5	16	106	- 44	358	13	43	20	26	
08:00	56	101	6	5	8	80	18	212	5	8	3	21	
11:00	- 28	105	5	2	7	2'	12	116	7	4	7	10	
12:00	24	115	6	2	- 5	- 25	16	109	- 5	6	7	21	
15:00	67	184	12	8	7	- 7'	17	138	10	- 5	13	22	
16:00	- 56	289	- 28	- 5	- 4	- 59	15	149	12	14	13	- 38	
17:00	60	295	21	2	6	48	28	185	10	12	11	44	

AUTOMATIC COUNTS

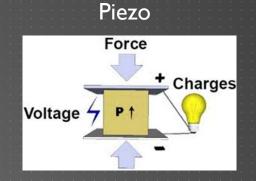
ATR Cabinet

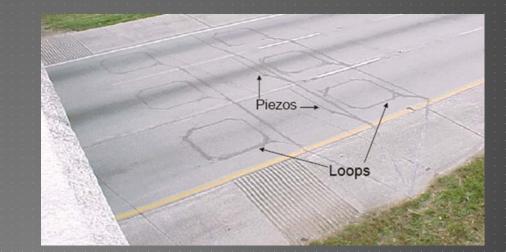
Class/Speed Site

Weigh-in-Motion Site

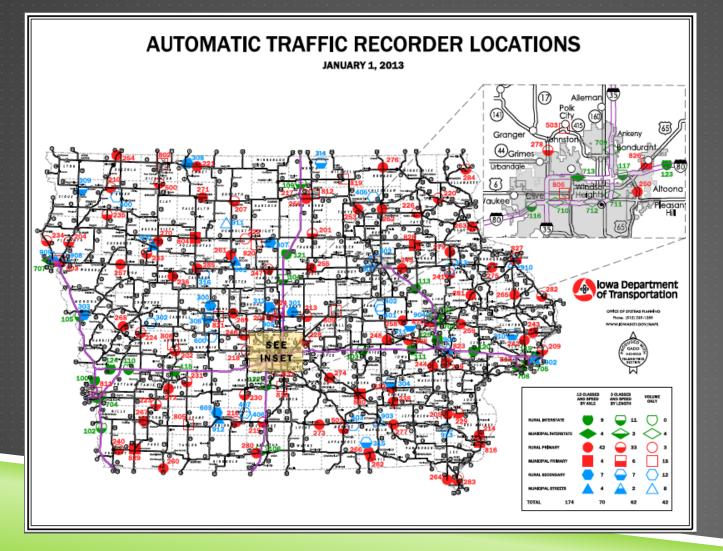
Radar Unit

AUTOMATIC TRAFFIC RECORDER


Volume Only


- Inductive Loop
- ► 3-Class and Speed
 - Inductive Loops

► I3-Class and Speed


- Piezo
- Inductive Loop
 - Combinations
 - PLPLPL

AUTOMATIC TRAFFIC RECORDER LOCATIONS

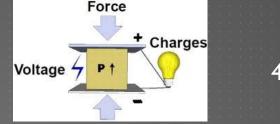
174 Current

Plan to Expand

Volume Only 42

3-Class/Speed 62

13-Class/Speed 70

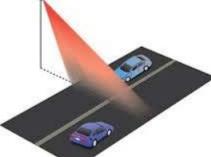

AUTOMATIC TRAFFIC RECORDERS

- Most basic function of highway planning and management
- Provide Continuous Traffic Count Data
- Understand DOW and Monthly Changes in Travel
- Data used to facilitate the expansion of short-term manual and portable counts to AADT.
- Aid in Calculating Statewide VMT
- Highway Performance Monitoring System Reporting

WEIGH IN MOTION

- WIM devices capture and record axle weights and gross vehicle weights
- Capable of measuring moving vehicles
- More efficient
- Allows bypass of static scales
- Same Principle Hardware as I3-Class
- Need Two Piezos and One Loop

40 Sites


WAVETRONIX

131

1.01

- Count
- 3-Class
- Speed

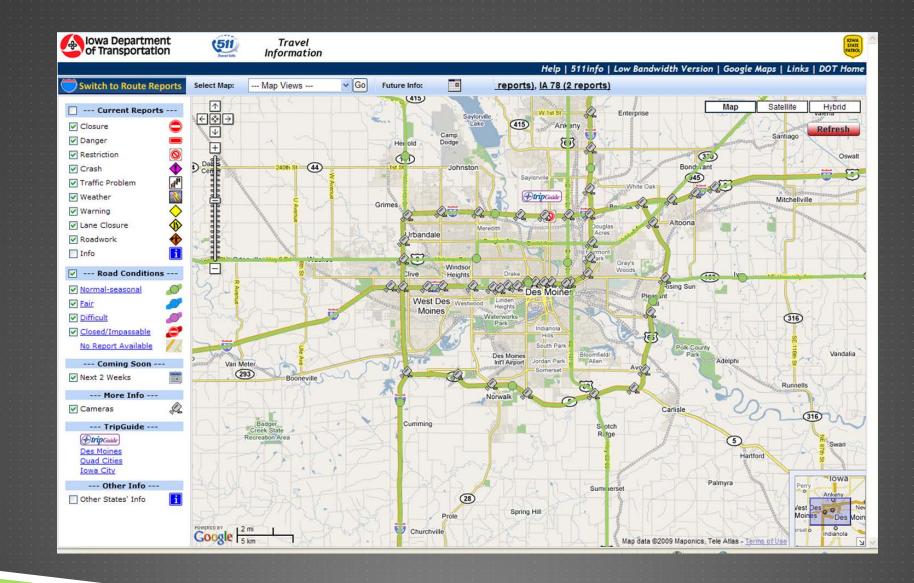
110

115

125

138

-112


INTELLIGENT TRANSPORTATION SYSTEMS

Des Moines Area

"Technology that makes travel smarter, safer, cleaner and more efficient."

http://www.iowadot.gov/i-235/tripguide_info.htm

- TripGuide covers
 - 62 miles of roadway in the DSM Metro
 - 43 CC TV Cameras
 - Planned 68 Wavetronix SmartSensors
 - Integrated with 511 Website
 - Will provide color coded traffic flow map
 - Originally developed to deal with traffic congestion during I-235 reconstruction

I-235: DM - I-235 @ 22nd St in WDM (16)

 \otimes

Load motion video

TRAFFIC DATA FROM ITS UNITS

Des Moines

Collect volume only data from ITS sites
Wavetronix connects to ADR for data storage
Ability to collect the data in intervals of our choosing
Iowa City, Cedar Rapids, Council Bluffs, Waterloo and Davenport

We only get data from the Des Moines sites at this time

- Feds require continuous measurement
- Other ITS sites do not always provide continuous measurement
- Data formatting (e.g. speed bins) is also an issue
 - Feds have certain requirements for reporting

STOPWATCH+ BY PEEK

SAFETEA-LU Real Time System Management Information Program

- Requires all States to monitor, in real time, traffic and travel conditions of major highways. This information will be shared to improve security of the surface transportation system, address congestions problems, support improved response to weather events and incidents and facilitate national and regional highway traveler information.
- Real-time traffic speed data integrated with existing hardware
- All current ATR Stations upgraded by end of 2013
- Eventually Integrated with 511 Website

More Traffic Data Without More Hardware

growing faster than roadway capacity to handle them. Add an occasional incident, or worse an emergency evacuation, and you have a traffic crisis. Traffic can't be managed if you don't know what it's doing at the moment. We have the no stand-alone end user software technology – the problem is the cost to install and maintain new sensors. for viewing data. A simple

StopWatch+ provides data in a simple format for import into existing systems or software to monitor traffic, events and occurrences. Since it reports real-time data, not stored files, the application has

Traffic Ma Centers Giver State-operated Routine daily traffic monitoring Traveler information and advisory service System operations performance me mergency Response System

ommunication protocol dilows

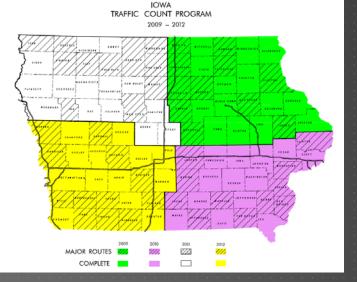
StopWatch+ to b asily interfaced

with a variety of data systems suc

 Exaction Weather and natural disaster Man-made disasters ncident Management Systems

Detection and monitoring of traffic accidents Road dasures and work zones Special event planning and control

StopWatch+ is such a valuable addition to ADR function that it is built right in to every new ADR and requires only a site, city or state-wide license fee for activation. Once activated, the StopWatch+ application enhances the operatio Stopmach+ oppication emanas the operation of the ADR to also process: Count, Average Speed and Occupancy data in intervals from 10 seconds to 60 minutes. This enhanced operation is totally independent from the ADR's historical data collection studies. With its dual communications ability, data from both the historical study and real-time intervals can be nonitored simultaneously. StopWatch+ can be configured to process any


combination of count, average speed and occupancy data on up to 16 lanes (or 32 overall lows). The StopWatch+ data can be optionally combined into individual flow totals, lane (or ensor array) totals, directional totals or ar unroll site total

www.peektraffic.com

QUADRENNIAL COUNT PROGRAM

- The state is divided into four zones as shown in the map.
- Each year a quarter of the state is selected for collection of traffic counts.
- The counties, which are hatched, are chosen in a cycle for complete counts, which includes the secondary roads and the counts for only the primary roads are collected in the remaining counties in the zone.
 - Thus, for primary (principal) roads, a data collection cycle is completed once every four years (one quarter of the state is counted every year). Secondary (non-principal) roads are counted only every eight years.
- Count data is made available in a variety of formats.

QUADRENNIAL COUNT PROGRAM

Pneumatic Hoses and CountersPeek Traffic Counters

TRADAS TRAFFIC DATA SYSTEM

What it is....

Comprehensive traffic data collection management, quality control and analysis software from Chaparral Systems Corporation.

Oracle Database

- Meets AASHTO guidelines
- Used by 15 other states

Benefits

- Oracle interface
- Move away from Mainframe
- Access to turning movements for other offices
- Easier to get data into HPMS
- Off the shelf analysis tools

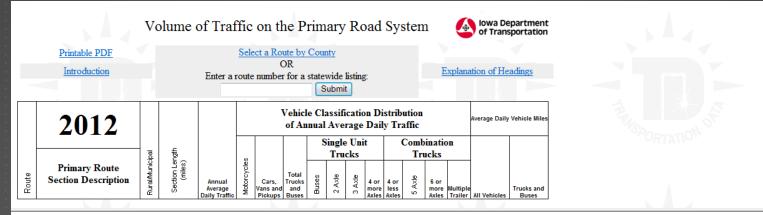
TRADAS DATA OUTPUT EXAMPLES

Iowa Department of Transportation

Commercial AADT at Continuous Sites for 2012

			Roadway			Neg Dir				
		AADT	C-AADT	M-AADT	AADT	C-AADT	M-AADT	AADT	C-AADT	M-AADT
100	Pottawattamie	19,899	3,807	3,147	10,017	1,912	1,584	9,882	1,895	1,563
I 29 2.0 MI N OF I 680 HONEY CREEK										
104	Hamilton	22,702	4,877	4,141	11,469	2,490	2,119	11,233	2,387	2,022
I 35 3.0 MI N OF IA 175 JEWELL										
111	Iowa	30,166	9,041	8,227	15,100	4,544	4,152	15,066	4,497	4,075
I 80 2.0 MI E OF IA 149 WILLIAMSBURG										

Percent of MADT at Continuous Count Vehicle Class Sites for 2012


Site Names: County: FunctClass: Location: 111

Iowa Rural Principal Arterial - Interstate I 80 2.0 MI E OF IA 149 WILLIAMSBURG Seasonal Factor Type: Daily Factor Type: Axle Factor Type: Growth Factor Type: Rural Interstate Rural Interstate Rural Interstate Rural Interstate

						2012 Trafi	fic Year						
Class	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AADT
MC	.2	.2					.6	1	.5	.2	.1	.1	.4
CAR	53.6	54.6					59.5	59.4	57.6	57.1	60.3	60	57.8
PU	10.8	10.7					10.4	10.5	10.7	10.8	10.9	11	10.7
BUS	.8	.8					.6	.6		.7	.6	.5	.7
2D	1.8	1.8					1.9	2.2	2.6	2.5	2.1	2	2.1
SU 3	.5	.5					.4	.5	.6	.6	.5	.5	.5
SU 4+	0	0					0	0	0	0	0	0	0
ST 4-	1.2	1.3					1.8	2.6	1.4	1.3	1	.9	1.5
ST 5	28.9	28.1					20.2	21.4	24.2	25	22.8	23.4	23.9
ST 6+	.2	.2					.2	.2	.2	.2	.2	.2	.2
MT 5-	1.2	1.2					.8	.9	.9	1	.9	.9	1
MT 6	.5	.5					.4	.4	.5	.5	.5	.4	.5
MT 7+	0	0					0	0	0	0	0	0	0
OFFSCALE	0	0					0	0	0	0	0	0	0
UNCLS	0	0					0	0	0	0	0	0	.1
MADT	23492	25138				35003	34687	36355	32441	31130	31468	26730	30348
UNCLS	0	0					0	0	0	0	0	0	.1

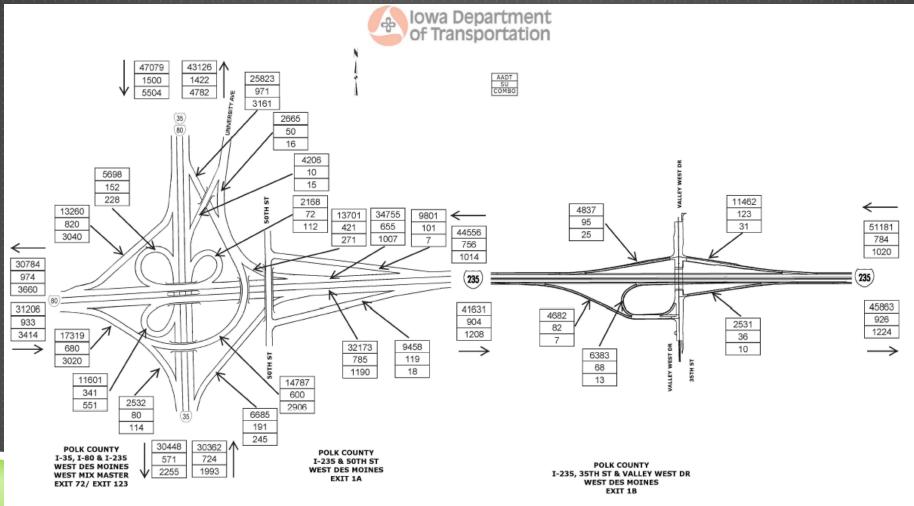
NOTE: Report values are rounded for more precise numbers, so totals may not add up.

TRAFFIC BOOK

Introduction

The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.

The traffic volumes depicted in this report are derived form data obtained at 8,000 count locations during 2009, 2010, 2011, and 2012. The 2009, 2010, and 2011 count data has been updated to reflect 2012 annual average daily traffic volumes. All primary roads were considered open to normal traffic flow, that is, roads that were under construction or carried detour routes have been estimated to reflect normal conditions. An asterisk has been placed at the right in the Section Description to identify where the traffic was estimated from previous years count data.


Each primary route is subdivided into sections which are listed in order from west to east or from south to north. The length of each section is governed by county lines, corporation lines, junctions, and high volume intersections. Section lengths are shown to the nearest 1000th of a mile. The route number and length of each section reflect the official road conditions as of January 1, 2013. Annual average daily traffic volumes shown at the end of each route tabulation represent the weighted values for that route.

Innerlegs, ramps, loops, and connections at interchanges or grade level intersections are not shown in this report. Traffic volumes for these road segments may be obtained from the Office of Transportation Data (515-239-1323) or by emailing Ron Bunting.

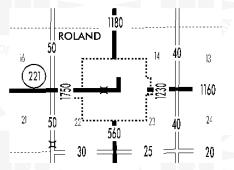
TRAFFIC BOOK

		Vo	olume	of Traf	fic	on th	he P	rim	nary	7 Ro	oad	Sys	sten	1	-		partment portation
	Printable PDF				Sele	ect a Ro	ute by	Cou	nty								
	The Araba					(OR							E		et to	P
	Introduction			Enter a:	route	e numbe	r for a	state	ewide	listin	g:			Ē	xpiana	tion of He	adings
				35					Subm	it							
	2012	012 Vehicle Classification Distribution of Annual Average Daily Traffic										Vehicle Miles					
			đţ					5	_	e Uni ıcks	it	•	Comb Tri	inatio Icks	n		
Route	Primary Route Section Description	RuralMunicipal	Section Length (miles)	Annual Average Daily Traffic	Motorcycles	Cars, Vans and Pickups	Total Trucks and Buses	Buses	2 Axle	3 Axle	4 or more Axles	4 or less Axles	5 Axle	6 or more Axles	Multiple Trailer	All Vehicles	Trucks and Buses
							_	_							<u> </u>		
35	US 69 INTERCHANGE EAST-NORTH WEST-NORTH	R	4.169	11600	47	7580	3973	89	273	69	4	251	3150	41	96	48360	16563
35	RAMP	R	0.249	730	4	670	56	7	21	5	0	2	20	0	0	182	14
	SOUTH-EAST SOUTH-WEST RAMP	R	0.379	330	2	290	38	5	16	4	0	1	11	0	0	125	14
	EAST-SOUTH WEST-SOUTH RAMP	R	0.249	430	2	367	61	9	28	7	0	1	15	0	0	107	15
35	NORTH-EAST NORTH-WEST RAMP	R	0.373	730	4	656	70	9	28	7	0	2	22	0	0	272	26
35	IA 2 INTERCHANGE	R	8.635	12400	52	8348	4000	90	278	70	4	253	3167	41	96	107074	34540
	EAST-NORTH WEST-NORTH RAMP	R	0.267	520	з	421	97	9	28	7	0	4	47	1	2	139	26
	SOUTH-EAST SOUTH-WEST RAMP	R	0.348	350	2	285	63	5	14	3	0	з	36	0	1	122	22
	EAST-SOUTH WEST-SOUTH RAMP	R	0.249	380	2	340	38	2	6	2	0	2	25	0	0	95	9
35	NORTH-EAST NORTH-WEST RAMP	R	0.348	560	3	437	120	5	16	4	0	7	84	1	2	195	42
35	INTCHG	R	5.124	12700	53	8532	4116	98	302	76	4	258	3237	42	99	65075	21090
	EAST-NORTH WEST-NORTH RAMP	R	0.249	260	1	236	23	1	4	1	0	1	14	0	0	65	6
	SOUTH-EAST SOUTH-WEST RAMP	R	0.311	45	0	32	12	1	3	1	0	1	7	0	0	14	4
	EAST-SOUTH WEST-SOUTH RAMP	R	0.249	40	0	34	6	1	3	1	0	0	2	0	0	10	1
35	NORTH-EAST NORTH-WEST RAMP	R	0.311	320	2	283	35	4	12	3	0	1	14	0	0	100	11
35	CO RD J14 INTERCHANGE	R	4.344	13200	56	8989	4156	102	313	79	4	260	3256	42	99	57341	18054
	EAST-NORTH WEST-NORTH RAMP	R	0.249	290	2	273	15	2	7	2	0	0	4	0	0	72	4
35	SOUTH-EAST SOUTH-WEST RAMP	R	0.261	70	0	54	16	1	4	1	o	1	8	0	o	18	4
	EAST-SOUTH WEST-SOUTH													77			

STRIP MAPS

2012

The


lowa Department of Transportation

Annual Average Daily Traffic

lowa Department of Transportation

Annual Average Daily Traffic

City and County Annual Average Daily Traffic (AADT) Maps

The City and County Annual Average Daily Traffic (AADT) maps available on the pages that follow are in <u>Adobe</u> Portable Document Format (PDF). In order to view these files, you must have Adobe's Free Reader. Click on the link below to go to Adobe's website and follow the installation instructions. The larger PDF files can be up to 1 MB in size and may take considerable time to load.

AADT is a general unit of measure for traffic, which represents the annual average traffic per day. Each city/county traffic map is updated every 4 years. To obtain additional traffic information, please call Ron Bunting at 515-239-1323 or email ronald.bunting@dot.lowa.gov.

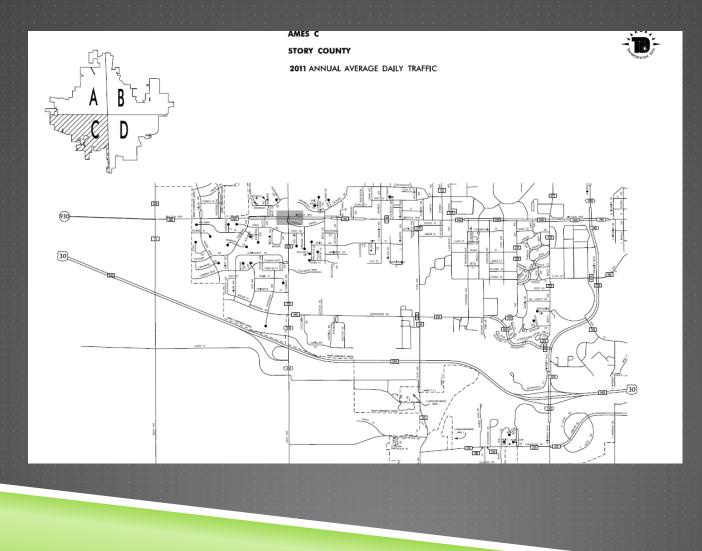
New! View the turning movement diagrams New!

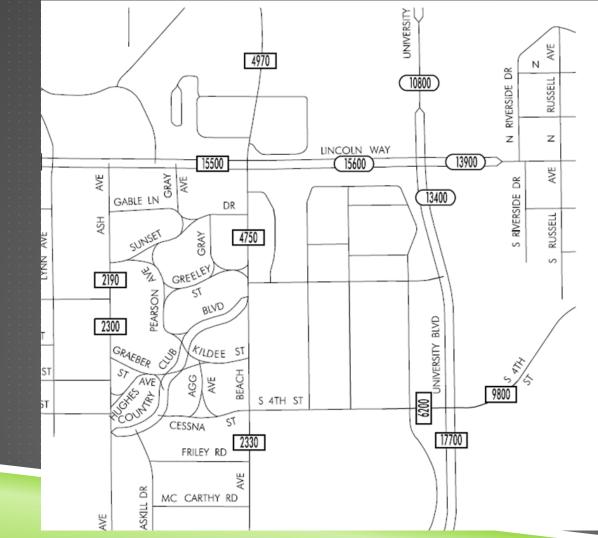
View the county and city traffic maps

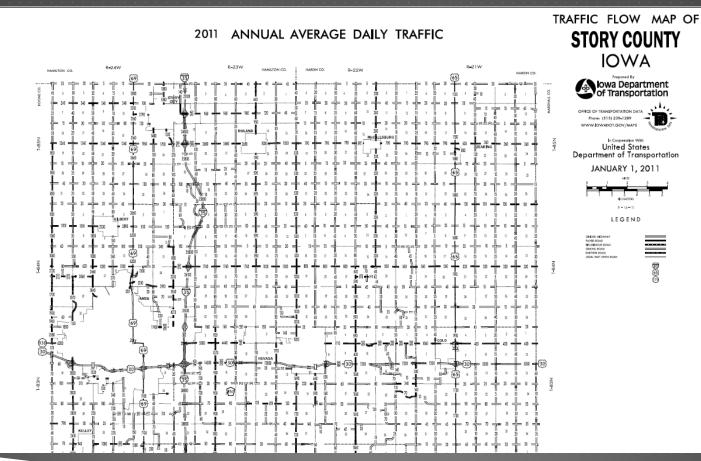
View the state traffic maps

Holp with printing DDE files

Transportation Data - AADT PDF Files

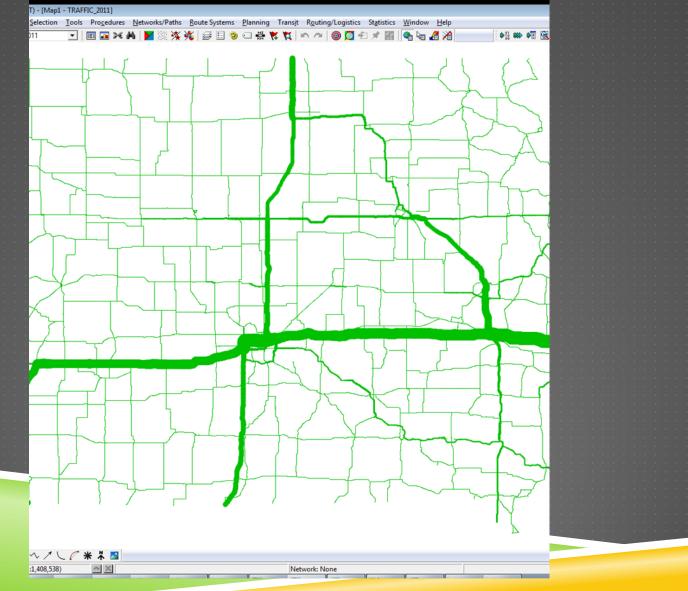

City Search


A-C - Find


TAX.

$\begin{array}{c} \text{Jump to County: } \underline{A-B} \subseteq \underline{D-G} \ \underline{H-K} \ \underline{L-M} \ \underline{O-S} \ \underline{T-W} \\ \text{Jump to City: } \underline{A} \ \underline{B} \subseteq \underline{D} \ \underline{E} \ \underline{F} \ \underline{G} \ \underline{H} \ \underline{I} \ \underline{J} \ \underline{K} \ \underline{L} \ \underline{M} \ \underline{N} \ \underline{O} \ \underline{P} \ \underline{Q} \ \underline{R} \ \underline{S} \ \underline{T} \ \underline{U} \ \underline{V} \ \underline{W} \ \underline{X} \ \underline{Y} \ \underline{Z} \end{array}$

Map Name	Current Year	Historical Year	Historical Year	Historical Year
	1	Α	<u>, </u>	
Ackley	2009	<u>2005</u>	<u>2001</u>	
Ackworth	2012	2008	<u>2004</u>	2000
Adair	2012	2008	<u>2004</u>	2000
Adel	2012	2008	<u>2004</u>	2000
Afton	2012	2008	2004	<u>2000</u>
Agency	<u>2010</u>	<u>2006</u>	<u>2002</u>	<u>1998</u>
Ainsworth	<u>2010</u>	<u>2006</u>	2002	<u>1998</u>
Akron	<u>2011</u>	<u>2007</u>	2003	<u>1999</u>
Albert City	<u>2011</u>	<u>2007</u>	<u>2003</u>	<u>1999</u>
Albia	2010	<u>2006</u>	2002	<u>1998</u>
Albion	2009	2005	2001	
Alburnett	2009	<u>2005</u>	<u>2001</u>	
Alden	2009	<u>2005</u>	<u>2001</u>	
Alexander	2009	<u>2005</u>	<u>2001</u>	
Algona	2011	<u>2007</u>	<u>2003</u>	<u>1999</u>
Alleman	2012	2008	<u>2004</u>	<u> </u>
Allerton	<u>2010</u>	<u>2006</u>	<u>2002</u>	<u>1998</u>
Allison	<u>2009</u>	2005	<u>2001</u>	
Alta	<u>2011</u>	<u>2007</u>	<u>2003</u>	<u>1999</u>
Alta Vista	2009	2005	2001	

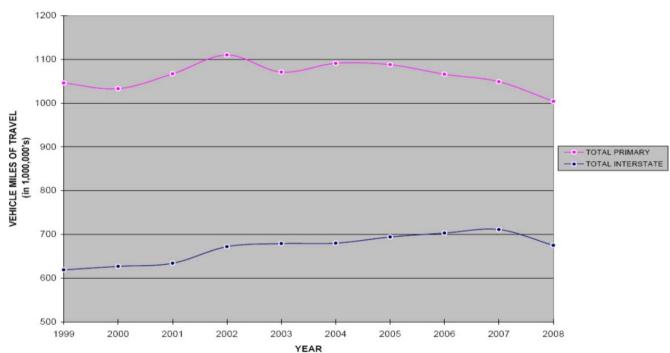


GIMS TRAFFIC

	Tools Procedures	Networks/Paths		nning Trans <u>i</u> t R <u>o</u> utir					
	y 💌 📰	🔤 🖂 🕅 】	🖌 💥 🥳 🎉 📲 i	🔒 %\$ 🛃 👬 🖩 🕂	🖶 🔆 🙀	8 Ba 🖓 i	n n e ,	1 🖬	● 👬 🗰 🍋
TransCAD (Licensed to Jewa DDT) - Mast - TRAINC 2011									
	EAUTOMOBILE	PICKUP	BUS SU2AXLE	SU3AXLE SU4AXL	E ST4AXLE	ST5AXLE	ST6AXLE	MT5AXLE	MTGAXLE MT7A
〕 22 日本 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 3321	917	32 135	40	4 39	269	8	8	1
	8 13561	2658	145 407		6 521	5966	71	71	92
	8 1088	300	16 67		28 17	57	2	2	0
	6 865 9 1297	239 358	9 38 17 73		1 7 2 25	50 175		2	0
	12 5874	1622	48 205		2 23 6 88	611	19	19	2
	13 8899	3272	18 160	32	6 11	56		6	0
	0 1383	382	10 44		1 15				0
	18 5248	1450	40 171		5 165			35	3
	18 5248	1450	40 171		5 165	1152		35	3
	20 2827 9 1277	781 353	28 120 14 61		4 77 2 5	540 38		17	1
	6 2214	353 612	19 80		2 5 3 80	38		17	1
10	2214	1128	35 150		5 80 5 39	269		8	1
	4 514	142	2 9		0 1	5			0
		91	28 120	35	4 77	540	17	17	1
			24 105		3 69	481	15	15	1
		58	19 169		6 70	342		35	1
	1 5597	2058 597	19 169 10 42		6 70 1 22	342 232		35	1
	6 2160 6 4229	1555	10 42 13 111		1 33 4 7	232		7	1 0
	6 805	222	5 21		1 3	20		1	0
	2 1694	468	15 62		2 22			5	0
The the the the the	5 651	180	8 35	10	19	66	2	2	0
	4 613	169	8 35	10	16	40		1	0
Jent - Later to the total	5 651	180	8 35	10	16	41		1	0
	11 4259	1176	35 152		5 59	409		13	1
	8 2551 10 5521	705 1525	34 147 50 214		5 59 7 139	409 972		13 30	1
ATT I A THE THE A WEAR	10 5521	1339	48 206		7 113	789		24	2
	15 4820	1331	50 214		7 139	972		30	2
	7 4625	1701	18 160	32	6 62	304	31	31	1
	20 5498	2021	23 203		7 69	335		34	1
	0 5425	1995	23 203		7 69	335		34	1
	3 4649	1284	46 199		6 121	843		26	2
44	4 504 3 396	139 109	5 22 10 45		1 15 1 9	105 59			U
	1 1499	414	41 178		6 53	370		11	1
leggede 1 Inch + 22.23972 Miles (JL) 496,538)	1 1499	414	41 178		6 53			11	1
		406	41 175		6 52			11	1
		420	18 76		2 29		-	6	1
	<mark>0 1450</mark>	400	21 90		3 24			5	0
	6 2280	630	18 79		2 22			5	0
	18 6623 20 2744	1829 758	33 143 17 74		5 44 2 20	310 142		9	1
	0 2/44	758				142			-
	9148 Total) 🙍	×	V		Network: None				
						I.m.		1	

GIMS TRAFFIC

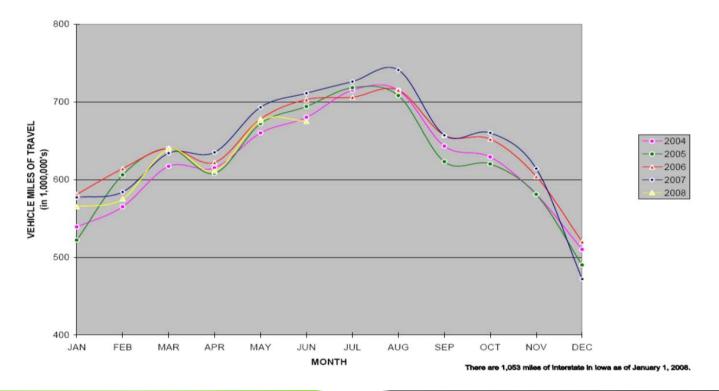
MONTHLY ATR REPORTS


TRAFFIC VOLUME VARIATIONS ON THE IOWA ROAD SYSTEM

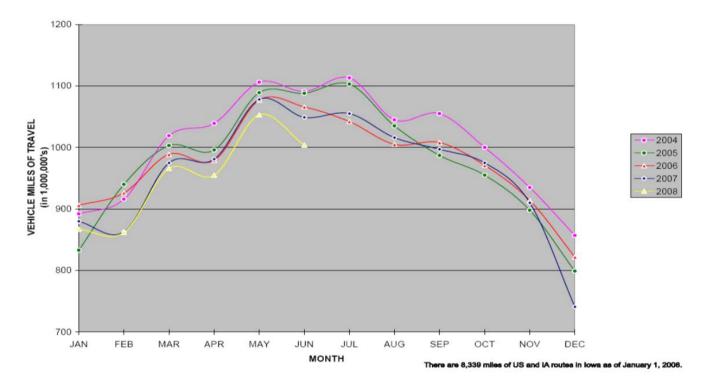
.....

	<u>JUNE</u> 2008	COMPARED TO	<u>JUNE</u> 2007	YEAR <u>TO DATE</u> 2008 / 2007
RURAL				
	INTERSTATE		-6.1%	-2.7%
	PRIMARY		-4.4%	-1.6%
	SECONDARY		-5.3%	-4.8%
SUBTOTAL			-5.1%	-2.8%
MUNICIPA	L			
	INTERSTATE		-2.7%	-1.8%
	PRIMARY		-4.0%	-3.1%
	STREETS		NO CHANGE	-1.4%
SUBTOTAL	_		-1.5%	-1.9%
STAT	E TOTAL		-3.7%	-2.5%

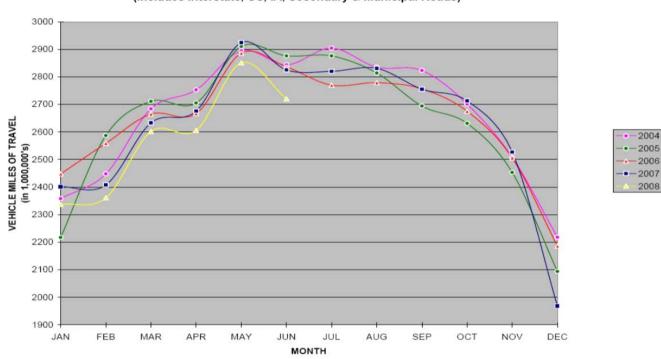
Data collected at the 144 continuous automatic traffic recorder locations shown on the following pages were utilized to compute the above percentages. The rural, municipal and state totals were weighted based on estimated vehicle miles of travel.


HISTORICAL MONTHLY TRENDS

JUNE HISTORICAL VMT


INTERSTATE TRAFFIC TRENDS

MONTHLY INTERSTATE TRAVEL



PRIMARY ROUTE TRAFFIC TRENDS

MONTHLY US & IA ROUTE VMT

STATE TRAFFIC TRENDS

MONTHLY TOTAL STATE VMT (Includes Interstate, US, IA, Secondary & Municipal Roads)

VMT REPORTS

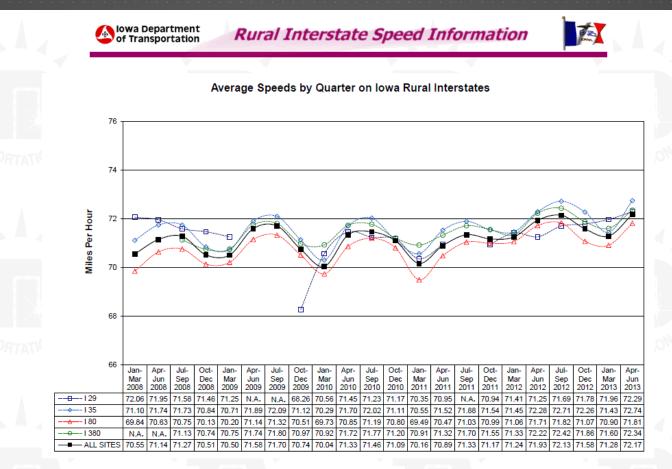
Vehicle Miles of Travel (VMT)

The vehicle miles of travel (VMT) summary information is calculated from traffic counts taken on state, county, and city roadways from both manual counts as well as automatic traffic recorders. The resulting traffic volume data is combined with the roadway length from the Geographic Information Management System and summarized in several formats. The information is used to meet Federal Highway Administration reporting requirements as part of the Highway Performance Monitoring System and provides a measure of highway vehicle travel usage over a geographic area, such as a county, state, or highway system. These estimates also provide a basis in calculating crash and fatality rates for measuring highway safety.

Definitions for Vehicle Miles of Travel (VMT)

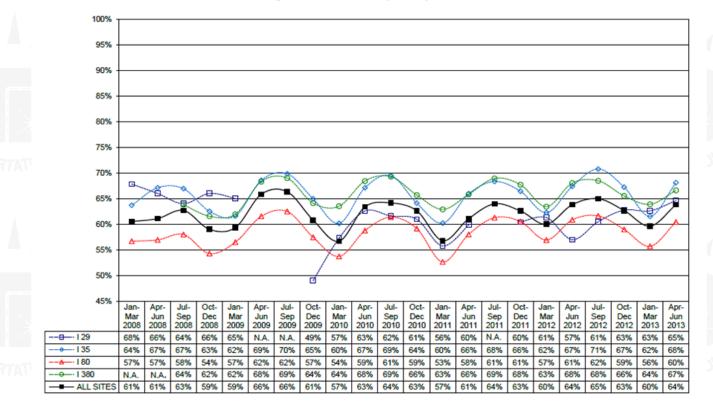
30-Year Historical VMT By System

1991-2000 Historical VMT By County & System


VMT by County and System	VMT by Classification	Monthly VMT		
2012	<u>2012</u>	2012		
2011	2011	2011		
2010	2010	<u>2010</u>		
2009	2009	<u>2009</u>		
2008	2008	2008		
<u>2007</u>	2007	2007		
2006	2006	2006		
2005	2005	2005		
2004	2004	2004		
2003	2003	2003		
2002	<u>2002</u>	2002		

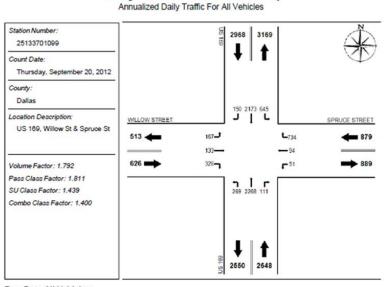
VMT REPORTS

VMT BY COUNTY/SYSTEM AS OF DECEMBER 31 2012 (1.000'S)


COUNTY	RUR INT	RUR PRI	SEC	TOT RUR	MUN INT	MUN PRI	MUN	TOT MUN	TOTAL
ADAIR	163440	31771	32030	227241	23849	4942	9294	38085	265326
ADAMS		28475	18494	46969		1912	3545	5457	52426
ALLAMAKEE		57119	45301	102420		10113	9621	19734	122154
APPANOOSE		44904	36724	81628		11688	15703	27391	109019
AUDUBON		30025	20516	50541		4555	4879	9434	59975
BENTON	51025	116728	84173	251926	9693	7902	27622	45217	297143
BLACK HAWK	78920	130774	94177	303871	64795	317461	480474	862730	1166601
BOONE		134252	59802	194054		17001	48230	65231	259285
BREMER		133518	50850	184368		38558	29041	67599	251967
BUCHANAN	38547	116584	73766	228897		13592	26634	40226	269123
BUENA VISTA		74894	56237	131131		14971	30266	45237	176368
BUTLER		52769	47550	100319		9115	13878	22993	123312
CALHOUN		65476	43681	109157		5701	12949	18650	127807
CARROLL		82425	54416	136841		19237	29640	48877	185718
CASS	170955	65538	22679	259172		16375	17892	34267	293439
CEDAR	291125	54569	57797	403491	107	8393	16597	25097	428588
CERRO GORDO	131802	108221	76126	316149	20988	82904	134883	238775	554924
CHEROKEE		50957	41504	92461		8771	13565	22336	114797
CHICKASAW		70741	40538	111279		12183	10845	23028	134307
CLARKE	91437	36687	15188	143312	11152	11306	8143	30601	173913
CLAY		67670	55365	123035		25639	34090	59729	182764
CLAYTON		86658	59874	146532		19377	14446	33823	180355
CLINTON		142576	69795	212371		84500	111758	196258	408629
CRAWFORD		91044	32454	123498		18466	19144	37610	161108
DALLAS	212663	124709	75587	412959	49268	76987	148300	274555	687514
DAVIS		44522	29368	73890		3629	4794	8423	82313
DECATUR	111635	22273	22077	155985		5564	6888	12452	168437
DELAWARE		107831	65540	173371		20426	19456	39882	213253
DES MOINES		92339	56699	149038		50652	110902	161554	310592
DICKINSON		77833	49090	126923		40038	28666	68704	195627
DUBUQUE		227117	99390	326507		172512	230567	403079	729586
EMMET		31609	22453	54062		11343	15227	26570	80632
FAYETTE		80680	60146	140826		17525	22611	40136	180962
FLOYD		110047	50686	160733		16461	21746	38207	198940
FRANKLIN	118370	36300	44618	199288		8435	10763	19198	218486
FREMONT	104026	41147	35305	180478		2319	6690	9009	189487

RURAL INTERSTATE SPEED REPORTS

- I-29 speed data is unavailable from April of 2008 through December of 2009 due to road construction at the data collection sites.
- Lower speeds on I-29 for the Oct-Dec 2009 quarter were due to only having valid speed data in December 2009.
- I-29 speed numbers for April of 2008 through March of 2009 were calculated using only the northbound traffic speed data from the Honey Creek site.
- I-80 speed calculations for July of 2011 through September of 2011 include westbound only data for sites #110, #120 and #123.


% OVER SPEED LIMIT REPORT

Percent of Traffic Driving over the Posted Speed by Quarter on Iowa Rural Interstates

- I-29 speed data is unavailable from April of 2008 through December of 2009 due to road construction at the data collection sites.
- Lower speeds on I-29 for the Oct-Dec 2009 quarter were due to only having valid speed data in December 2009.
- I-29 speed numbers for April of 2008 through March of 2009 were calculated using only the northbound traffic speed data from the Honey Creek site.
- I-80 speed calculations for July of 2011 through September of 2011 include westbound only data for sites #110, #120 and #123.

TURNING MOVEMENT DIAGRAMS

Iowa Department of Transportation Turning Movement Traffic Count Summary

Raw Data-All Vehicles:

ſ	N Leg			E Leg			S Leg			W Leg		
[L	T	R	L	T	R	L	T	R	L	T	R
07:00	70	128	6	5	16	106	44	358	13	43	20	26
08:00	56	101	6	5	8	80	18	212	5	8	3	2
11:00	28	105	5	2	7	21	12	116	7	4	7	10
12:00	24	115	6	2	5	25	16	109	5	6	7	2
15:00	67	184	12	8	7	71	17	138	10	5	13	22
16:00	- 56	289	28	5	4	56	15	149	12	14	13	36
17:00	60	295	21	2	6	48	28	185	10	12	11	44

Created 7/17/2013 11:05:10AM

TRADAS TIE TO LINEAR REFERENCING SYSTEM

- Both systems in Oracle
- Traffic count locations are being populated using transport links and nodes
- II7,000 Recorder sites (from 20 yrs)
- 6,000 Manual Count sites
- Tie will ease integration of traffic data with other agency data.

AXLELIGHT

AxleLight – non-intrusive laser axle sensor system. First permanent		
installation in the country.		
Simplified Installation and Maintenance		
Roadside cabinet		
 Close to the ground (ankle height) 		
Easy access		

Sensors

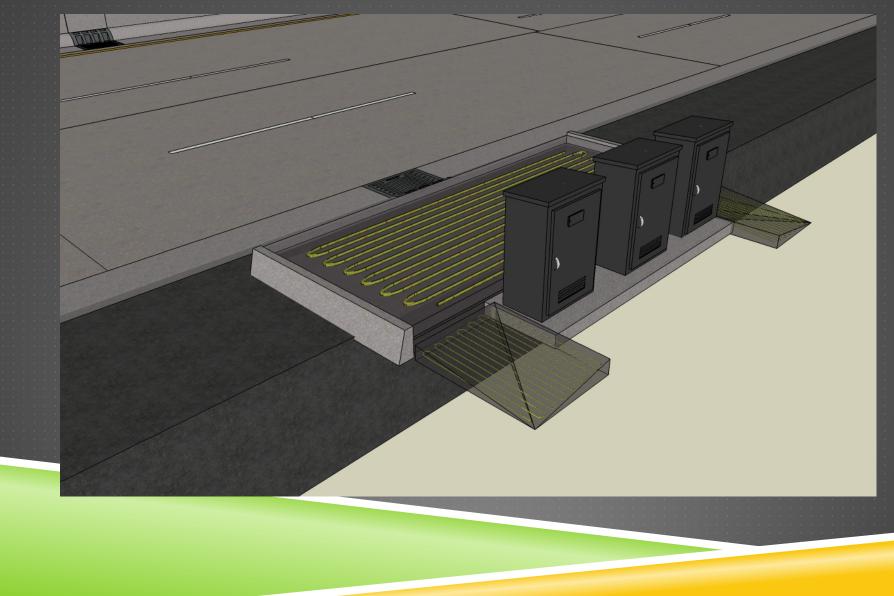
- Infrared axle sensor (non visible)
- Parallel beams ~ 10 feet apart
- Capable of vehicle classification, length, speed, etc.
- Detects axles in 1 to 4 lanes

Safety

- No equipment required in or on the highway
- No lane closures

Power

- Initially powered by solar panel
- Most of Iowa's ATR's are powered by solar, 2 by direct electricity
 - Augmented solar with the wind turbine.



Turned out AxleLight needed more power than the solar and battery could provide. Direct power was needed.

Co or train

TIRTL

Purchased in June 2008 to use as a permanent installation.

- Captures traffic volumes, speed and classification.
- High tech cabinets in Jersey barrier.
- No success in getting a functioning system
- Poor technical support which created rising installation costs.
- Project scrapped with lawsuit for refund

TRAFFIC MONITORING DATA USES

Roles We Play

WHAT'S AHEAD?

- Evaluating new technology to improve the data quality and create a safer environment for installation and maintenance.
- Seek other feasible methods for conducting manual and recorder counts.
- Add to the ATR and WIM Systems
- Utilization of ITS data.
- Complete the move of traffic data to an Oracle database.
- Continue to use of the Linear Referencing System to improve the collection process and create the ability for more potential customers to utilize traffic data.

SOURCES

- FHWA Office of Highway Policy Information -<u>http://www.fhwa.dot.gov/policyinformation/</u>
- Traffic Monitoring Guide <u>http://www.fhwa.dot.gov/ohim/tmguide/</u>
- TRADAS (TRAffic DAta System) Chaparral Systems Corporation -<u>http://chapsys.com/index.html</u>
- TripGuide <u>http://www.iowadot.gov/i-235/tripguide_info.htm</u>
- IowaDOTMaps <u>http://www.iowadot.gov/maps//</u>

