Environmental Justice Case Study in the Des Moines Metropolitan Area

Adam Shell

February 25, 2010

Presentation Overview

- Introduction & Objective
- Background on EJ
- EJ & Transportation
- Review of Methods
- Methodology
- Analysis & Results
- Conclusion
- Questions?

Introduction & Objective

Introduction & Objective

Introduction

- EJ = Unequal Human & Environmental Impacts
- Broad and Multifaceted
- Transportation Benefits and Burdens
 Objective
 - To analyze four transportation measures (accessibility, mobility, safety, and equity) and compare them between EJ and non-EJ areas.

Background of EJ

Background of EJ

• Fundamental Principles of EJ... 1. Avoid, Minimize, Mitigate....effects 2. Full & Fair Participation 3. Prevent denial, reduction or delay in benefits Who are the disadvantaged? • History -Research & Case Law -Policy (Civil Rights Act, NEPA, EO 12898)

Background of EJ

Two Sides of the EJ Debate

Advocates

- Lack of Awareness
- Deliberate exclusion from decision-making
- Limited political and economic power

Opponents

- Other pressing issues
- Industrial activity and settlement of majority before minority
- Racial motivation false and coincidental

EJ & Transportation

EJ & Transportation

Benefits

- Improved Accessibility
- Improved Travel Times to Selected Locations
- Provision & Quality of Transit Service
- Other: Proximity to Projects, User Characteristics, Asset Conditions

Burdens

- Community Disruption
- Economic
- Fiscal Decline
- Taxpayer Borne Costs
- Displacement
- Reductions in Safety and Security
- Noise & Air Pollution

Difficult to establish evidence of project impacts at system-wide level

 Selecting the Spatial Unit -Cover all bases (Scope, Scale, Data) -Small Spatial Units may lead to unreasonable results and suggest potential for little to no concern -U.S. Census Data Most widely used Common: TAZ's, block groups, & tracts -No-hard-and-fast-rule Test Sensitivity of Results

- Identifying EJ Areas
 - -Standard

 EJ Populations as percentage and select where exceed a percentage based threshold.

- -EPA
 - Low-Income by U.S. Census
 - Minority
 - ->50% of affected area or,
 - "Meaningfully greater" (Analyst Judgment)
- -Unique Approach (Honglong Li et al.)

 Tools for Analysis -No Single Method Exists -Qualitative & Quantitative Tools -Geographic Information Systems (GIS) Primary Tool EJ Identification & Analyses - Other Travel Demand Model Air Quality and Noise Models

 MPO EJ Assessment - Iowa MPO's - PPP, PTP, or Title VI - EJ Definition Percentage Threshold -EJ Categories Primarily Minority & Low-income -Tools GIS Some Travel Demand Model use

.

Study Area

 Environmental Justice Assessment in Racially Diverse Areas (Li et al.) Performance Measures -Accessibility -Mobility (Temporal) -Safety -Equity Modifications - TDM, Safety, and Equity

Performance Measure	Definition	Question Asked	Procedure	Data Source
Accessibility	Ease of reaching opportunities by using surface transportation.	Will EJ areas have comparable access to specific groups of trip attractors as compared to non-EJ areas?	 Identify major trip attractors. Determine travel time thresholds. Estimate number of EJ and non-EJ areas within travel time threshold. Compare number of EJ and non-EJ areas within travel time threshold. 	DMAMPO TDM; DMAMPO TAZ; TIP 2004-2006; & 2030 LRTP
Mobility	Ease of movement of people, goods, and services.	Will EJ areas experience a comparable time savings compared to non-EJ areas in the future transportation systems?	 Calculate home-to-work trip travel time. Calculate home-to-work trip travel time difference between the existing condition and transportation plans. Compare travel time savings for EJ and non-EJ areas. 	DMAMPO TDM; DMAMPO TAZ; TIP 2004-2006; & 2030 LRTP
Safety	Risk of crash or injury; safety improvement projects	Do EJ areas experience a comparable risk of crash or injury? Will the safety improvement projects in the TIP be allocated evenly between EJ and non-EJ areas?	1. Calculate annual crash rate. 2. Compare annual crash rate between EJ and non-EJ areas. 3. Determine safety improvement projects for each area. 4. Compare safety improvement projects for EJ and non-EJ areas.	Iowa DOT Crash Data 2001-2005; Iowa DOT Highway GIS Files, DMAMPO TAZ; & TIP 2004- 2006
Equity	Distribution of transportation expenditure in transportation plans.	Are transportation plan expenditures allocated equitably between EJ and non-EJ block groups?	 Estimate percentage of areas receiving transportation expenditure and average expenditure for EJ and non-EJ areas. Compare these two indices between EJ and non-EJ areas. 	TIP 2004-2006; & 2030 LRTP

Source: Environmental Justice Assessment in Racially Diverse Areas. Honglong Li et al.

Data Sources

- 2001 2005 Crash Data (InTrans)
- Travel Demand Model (DMAMPO)
- Planning Documents (DMAMPO)
- GIS Shapefiles
 - Transportation Projects (DMAMPO)
 - Highway & Traffic Data (Iowa DOT)
 - Block Group TIGER files (U.S. Census Bureau)

 Selected Social Groups -Minority (Sum of all non-White races and White Hispanics) -Low-Income (Population Below Poverty Level) -Elderly (Age 65 & Over) -Disabled (Physical Disability Only) -Zero Car Households (Owner Occupied) Spatial Unit - Block Group (EJ Identification)

 Concentrations of Social Groups -Threshold based on Li et al. Method

 $NC_{Minority} = \left(\frac{Minority \ Population_{Block \ Group}}{Total \ Population_{All \ Block \ Groups}}\right) - \left(\frac{Population_{Block \ Group}}{Total \ Population_{All \ Block \ Groups}}\right)$

 EJ Area if NC > Average plus 1 Std Deviation - General EJ Area if one or more category in block group

EJ Category	Block Groups
Minority	31
Low Income	35
Elderly	28
Physically Disable	42
Zero Car Households	43
Total EJ Block Groups	114

Identify TAZ's as EJ or non-EJ

 Necessary in order to use the TDM
 Iterative Process
 Overlay TAZ Polygon with Block Group Centroid
 Overlay TAZ Centroid with Block Group Polygon

Identify TAZ's as EJ or non-EJ

Travel Model

 Accessibility & Mobility Performance Measures Assign TAZ Centroids as EJ or non-EJ - Calculate "Loaded" Travel Time Scenarios 2000, 2005, 2030 • Safety Analysis (2001-2005) - Crash Data: all crash types - 2003 Traffic (AADT) to calculate VMT Excluded Freeway Crashes

 Equity Analysis -MPO Planning Documents 2030 LRTP FFY 2004-2006 -Transportation Projects Project expenditures in plans to GIS files Summarize Project Expenditures by EJ & non-EJ Allocated expenditures by percentage of length Emphasis on Highway Funding - Transit funding lacked detail and improvements weren't geographic specific

• Accessibility

Ease of reaching opportunities

Opportunities = trips to work, school, shopping, etc

 Determine if EJ and non-EJ areas have comparable access to the top destinations

- Top 10 HBW & HBO (Internal) Attractors
 - Hospitals
 - Shopping Malls
 - Casino
 - University

Des Moines 2000 Network X Map layers TAZ EJ TAZ's HBW Attractors

Travel Time Thresholds (TTT) - 75th Percentile from all TAZ's to all TAZ's.

Travel Time Thresholds (TTT) - 75th Percentile from all TAZ's to all TAZ's.

2000 TTT	Home-Based Work Trips	Home-Based Other Trips		
Average Travel Time (min)	19.9	15.4		
Travel Time Threshold (min)	28.1	23.7		

Home-Based Work Trips	Home-Based Other Trips		
21.3	16.8		
29.9	27.2		
	Work Trips 21.3		

2030 TTT	Home-Based Work Trips	Home-Based Other Trips		
Average Travel Time (min)	30.4	27.5		
Travel Time Threshold (min)	39.3	38.3		

Accessibility Accessibility Ratio (AR)

$$\Delta R = \frac{\sum_{n=1}^{N} \left(\frac{PT_n}{\sum_{n=1}^{N} PT_n} A_n \right)}{N}$$

Where:

N = total number of trip attractor zones for HBW and HBO n = number of trip attractor zones PT = number of auto-trips by trip purpose $A_n = \left[\frac{(\# \text{ EJ TAZ's within TTT/total \# of EJ TAZ's})}{(\# \text{ of non-EJ TAZ's within TTT/total \# of non-EJ TAZs')} \right]$

- AR < 1; EJ lower accessibility
 AR = 1; Equity
- AR > 1; EJ better accessibility

A_n Ratio

	2000_Accessibility.xls [Compatibility Mode] - Microsoft Excel										x			
	Home Insert Page Layout Formulas Data Review View Get Started											x		
Past	H Calibri te J B I	► 10 <u><u><u></u></u> <u></u></u>	P ▼ A [*] A [*] ▼ 3 ~ A ~				ieneral \$ - % •	▼ •.0 .00 •.0 →.0	Conditional For B Format as Tak Cell Styles *	-	Insert → Insert → Delete →		& Find & r * Select *	
Clipb	oard 🖻	Font	6	A	lignment	G	Number	6	Styles		Cells		iting	
	K226	- (9	f_{sc}	<u>^</u>										¥
	A	В	С	D	E	F	G	Н		J	K	L	М	
1	EJ_TAZ	20	143	157	193	207	232	265	442	472	514	Sum		-
202	4255	3.1	15.0	6.0	2.7	12.7	1.1	21.1	16.4	14.5	13.8	106.4		
203	4256	4.0	14.1	5.3	1.7	12.9	0.7	21.8	3 17.1	13.8	13.1	104.7		
204	4283	4.5	11.6	3.2	5.0	17.0	4.8	21.0) 19.4	14.1	13.4	114.0		
205	4284	2.9	12.5	4.0	3.3	15.5	3.0	19.9) 17.9	14.0	13.3	106.3		
206	4285	2.3	13.1	4.5	2.7	14.7	2.3	20.1	17.0	13.4	12.7	102.9		
207	4291	7.8	11.3	4.0	5.0	18.1	5.9	25.7	20.7	10.1	9.4	118.0		
208	4292	6.8	11.6	3.3	4.2	17.3	5.1	24.8	3 19.7	11.0	10.3	114.1		
209	4293	6.9	12.1	3.2	3.7	16.8	4.6	24.8	3 19.8	11.4	10.7	113.8		
210	4303	17.4	13.4	14.2	15.6	28.3	15.9	29.5	5 28.6	4.5	5.4	172.8		
211	4318	12.8	24.6	15.8	12.2	4.5	11.3	31.2	2 22.4	24.3	23.6	182.9		
212	4321	9.9	21.9	14.4	13.1	18.4	12.1	23.3		22.9	22.2	169.3		
213	4323	9.2	19.4	13.8	12.5	19.0	11.4	20.7		22.3	21.6	159.6		
214	4333	4.0	12.1	9.4	8.4	16.8	7.5	16.7	14.7	18.4	17.7	125.8		
215										-		30516.9		
	EJ TAZ Within	213	213	213	213	203	213	181		205	207			
217	Total TAZ	213	213	213	213	213	213	213		213	213			
218	Ratio	1.00	1.00	1.00	1.00	0.95	1.00	0.85	5 0.96	0.96	0.97			
219														
220			Note: 213 E.	TAZ's to	Top 10 Dest	inations (Internal Top	10)						
221														
222	► ► Li /TTT	E1 SDM	AT-HBW To	n10 / E1	SPMAT-HB) Top10	pop-E1 C	рмат.ш	BW Top10	non-E1 CD	MAT-HBO To	n 1 4		
Read		SPM		μιυζου	_3PMAT-HBU			FINAT-HI	Bw_lohio /					
Read	У					_					100%	~	U	.::

A_n Ratio....cont

R	2000_Accessibility.xls [Compatibility Mode] - Microsoft Excel									X				
	🖵 Home Insert Page Layout Formulas Data Review View Get Started 🛛 🐵 – 🖛 🗙											, x		
	Calibri -	P		A =		Number				J ≣•⊐ In	sert - 🛛 🗸 -	27 🕅		
		10 • A		= = >>-		Number	· · · · · · · · · · · · · · · · · · ·	<u></u>			elete - 🔳 -			
Paste	e 🛷 🖪 I 🗓 -	🗄 • 🔗 • 🔒	<u>A</u> - ≣		🗐 🖬 🔹	\$ - % ,	00. 00. 00. ♦.0	Conditional Formatting *			ormat - 🖉 -	Sort & Find Filter * Select		
Clipboard Font Clipboard Clipbo														
E749 • fx ¥														
	А	В	С	D	E	F	G	Н		J	K	L	М	
1	HBW OD	20	143	157	193	207	232	265	442	472	514	Sum		
733	4460	0.3	0.3	0.3	0.6	0.3	0.3	0.0	0.5	0.2	0.2	3.0		
734	4461	0.3	0.3	0.3	0.6	0.5	0.3	0.7	0.6	0.3	0.2	4.0		
735	4462	0.3	0.4	0.4	0.6	0.5	0.3	0.7	0.6	0.3	0.2	4.3		
736		2,275	3,368	3,464	4,834	2,996	2,200	2,185	3,380	4,157	2,800	31,660		
737														
738	PTn	2,275	3,368	3,464	4,834	2,996	2,200	2,185	3,380	4,157	2,800			
739	ΣPT_n	31,660	31,660	31,660	31,660	31,660	31,660	31,660	31,660	31,660	31,660			
740	$PT_n/\Sigma PT_n$	0.07	0.11	0.11	0.15	0.09	0.07	0.07	0.11	0.13	0.09			
741	A _n Ratio	1.05	1.08	1.02	1.03	1.46	1.03	1.67	1.44	1.16	1.16			
742	$(PT_n/\Sigma PT_n)^*(An Ratio)$	0.08	0.11	0.11	0.16	0.14	0.07	0.12	0.15	0.15	0.10			
743	Σ	1.19												
744	2000 HBW AR=	0.119												
745														
746	TAZs	734		Rows = All	TAZ's							•		
747				Cols = HBW	/ Top 10 At	tractors					ΣA _n	12.09		
748											Average A _n	1.21		
749]								
750														
751														
752									4					Y
I		Г-НВW_Тор	10 🖉 nor	n-EJ_SPMAT-	HBO_Top1	0 HBW_9	Summary	HBO_Sum	mary 🎊					
Ready	Ready 🔲 🛄 100% 💬 — 🖓 🕂													

- Accessibility
 - -Results
 - Summary of Average A_n (Ratio EJ / Ratio non-EJ within)

	HBW	HBO
2000	1.21	1.57
2005	1.14	1.35
2030	1.12	1.22

- Analysis determined EJ areas have better overall accessibility
- Isochronal Map (Merle Hay Mall Only!)
Results and Analysis

- Mobility (Temporal)
 - Ease of movement of people, goods, and services
 - Transportation to work top priority...
 - ...Given employment most effective way to improve disadvantaged status of EJ
 - Determine if EJ and non-EJ areas have comparable time savings in the future transportation systems

Mobility

75th Percentile HBW Travel Time
 From EJ areas....to all TAZ's
 From non-EJ areas....to all TAZ's
 Results
 EJ areas greater travel time increase, however
 EJ Areas experience lower absolute travel time

	75th percentile Tra	Travel Time Change		
	EJ	non-EJ	EJ	non-EJ
2000	23	27.5	-	-
2005	24.6	29.1	7.0%	5.8%
2030	34.5	39.1	50.0%	42.2%

HBW Trips – 75th Percentile Travel Time & Change

- Safety
 - Goal of Safety Improvements: To reduce the risk of crash and injury
 - Crash rate used to determine risk

Crash Rate (100 MVM) =(Average Annual Crashes*100,000,000)/(VMT*365)

Where: VMT=AADT*Segment Length

AADT=Annual Average Daily Traffic

 Compare crash rate between EJ and non-EJ
 Compare distribution of safety improvements between EJ and non-EJ
 Excluded Freeways (Crashes & VMT)

Safety

Crash Rate Summary for EJ and non-EJ Areas

Variable	EJ Areas	Non-EJ Areas	DMAMPO	
TAZ's	213	429	642	
VMT_2003	1,874,316,672	2,600,015,142	4,474,331,814	
Crash_2001	10,405	8,760	19,165	
Crash_2002	10,396	9,250	19,646	
Crash_2003	10,861	9,206	20,067	
Crash_2004	10,480	9,620	20,100	
Crash_2005	10,564	10,053	20,617	
Crash_Avg	10,541	10,541 9,378 1		
Crash Rate	562.4	360.7	445.2	

Note: Crash Rate per 100 MVM

Results and Analysis

Safety

Crash Rate by Traffic Analysis Zone

Safety

Improvements outlined in TIP only!

Note: Projects included Bridge Rehab, Signals, Capacity

TAZ's with a Crash Rate that exceed MPO Average and Receive a SIP

Category	Crash Rate >= 445	Crash Rate >= 445 and receiving a SIP					
EJ	126	8					
Non-EJ	99	9					
Martin Crash Bata and 100 MBM							

Note: Crash Rate per 100 MVM

Safety Improvement Expenditures for EJ and non-EJ

Category	#TAZ's	TAZ's % TAZs Safety Expenditures (Million \$)		Percent of TIP	
EJ	14	2%	\$7.02	2%	
Non-EJ	45	7%	\$38.84	11%	

Note:

The total costs of the TIP for years 2004-2006 is \$361,162,881.

Interstate safety expenditures are not included.

Equity

 Distribution of transportation expenditures
 TIP & LRTP

 Determine if plan expenditures are equitable between EJ and non-EJ

 Included only projects if provided local benefits
 Excluded Interstate Capacity and Interchange Improvements

• Equity

Category	Number of TAZ's Receiving a Transportation Expenditure		Recei Transp	Percent of TAZ's Receiving a Transportation Expenditure		Total Transportation Expenditure (millions \$)		Average Transportation Expenditure per TAZ (millions \$)		Expenditure Per Capita (millions \$)	
	TIP	LRTP	TIP	LRTP	TIP	LRTP	TIP	LRTP	TIP	LRTP	
EJ	33	16	5%	3%	\$37.95	\$34.38	\$1.15	\$2.15	\$1,361	\$1,623	
non-EJ	66	86	10%	13%	\$45.71	\$268.76	\$0.69	\$3.13	\$1,040	\$5,858	

Note:

The total costs of the TIP for years 2004-2006 is \$361,162,881.

The total cost of the LRTP between 2020 and 2030 is \$650,224,000.

3) Interstate investment for the TIP and LRTP is not included.

4) 2000 Population was used to determine expenditures per capita

Greater share of overall expenditures to non-EJ
 However....on a per TAZ and per capita basis, non-EJ receive less in the TIP

Conclusion

Conclusion

 Unique Approach to define EJ areas System-Wide EJ Analysis -Importance of Performance Measures & Merits to Trade-Offs Limitations — Travel Demand Model Lack of Mode Split (Transit) -Socially Disadvantaged Groups (Elderly?) Recommendations?

Questions?