Resiliency Planning in Transportation

Practical Software Tools and Long-Term Visions

Steve Lavrenz

M.S. Student, Transportation Engineering

slavrenz@iastate.edu

IOWA STATE UNIVERSITY Institute for Transportation

Overview of Topic

- Definitions of Resiliency
 - General Definition
 - Transportation Context
- Software tools review
 - CARVER²
 - TRAGIS
- Overview of NETSCORE & Netplan
 - Research Description
 - Sample Results
 - Ongoing issues & considerations

What is Resiliency?

- Communications: "The ability to provide and maintain an acceptable level of service in the face of faults and challenges to normal operation"¹
- Process Control: "The ability of a system to return to its original (or desired) state after being disturbed"²
- Aerospace: "The ability to change when a force is enacted, and the ability to perform adequately while the force is in effect."³
- 1. J. P. Sterbenz, and D. Hutchison, "ResiliNets: Mutlilevel Resilient & Survivable Networking Initiative", Aug. 2006, Retrieved September 2010, from University of Kansas Information and Telecommunication Technology Center.
- 2. M. Christopher, and C. Rutherford, "Creating Supply Chain Resilience Through Agile Six Sigma", CriticalEYE, Vol. 5, 2004.
- 3. J. F. Castet, and J. Saleh, "Survivability and Resiliency of Spacecraft and Space-Based Networks: a Framework for Characterization and Analysis", AIAA Space 2008 Conference & Exposition, San Diego, 2008

In a Transportation Context...

- Likelihood The probability of an event occurring and the potential for it to disrupt the transportation network
- Severity The impact of an event, in terms of lost network capability which has occurred on transportation network performance

"Resiliency in long-term planning of the national energy and transportation systems." Ibáñez, E.; Lavrenz, S.; Mejía, D.; Somani, A.; McCalley, J.. October 2010.

Evaluating Resiliency

- Planning for a resilient network will reduce the adverse impact of future disasters, technology changes, etc.
- Limited budgets generate fierce competition for current and future roads project needs.
- Resiliency is another tool which can be used to objectively evaluate a group of projects.
- A resilient transportation system "can meet long-term economic, social and environmental goals under a wide range of unpredictable future conditions."¹

 [&]quot;Evaluating Transportation Resilience". TDM Encyclopedia, Victoria Transport Policy Institute. Updated 26 January 2010. Retrieved 5 August 2011.

Resiliency Software Tools

- What sorts of tools are currently available to transportation professionals?
 - Not a whole lot
 - Tools which are purposed for resiliency and risk assessment, don't require a strong learning curve
- CARVER² & TRAGIS
 - Risk assessment and transportation routing
 - Easy to use, free, publically available (with restrictions)

CARVER² - Introduction

- Criticality Accessibility Recoverability Vulnerability Espyability Redundancy, version 2
- Developed by NI² Center for Infrastructure Expertise
- Ranks infrastructure elements by threat of disruption and resulting effects
- Ranking done in terms of raw score can be used for dissimilar infrastructure elements
- Can be used to assess likelihood in terms of infrastructure vulnerability.

CARVER² – User Interface

CARVER2 - NI2 Center for Infrastructure Exp	ertise	_ 🗆 ×
File Edit View Database Reports Tools Help		
NI ² Center for Infrastructure Expert	carver ^{13se}	SCORE : 143 - 4
Inspector Default Inspector	Organization State or Municipality	
Asset Name Bridge 21	Address Se	ctor Transportation
Asset Identification Number N/A	GPS GIS Subty	ype Bridges
Criticality	Accessibility	Recoverability
Impact of Loss of Asset	Ease at which terrorists can enter infrastructure to cause its destruction	Time needed to replace
Users Affected More than 25,000 People 💌	Open to Public	infrastructure, if possible
Direct Economic Loss and Cost to Rebuild (\$)		More than 1 mo 🗾
Potential Deaths from Attack 50	O Yes O No	
Vulnerability	Espyability	Redundancy
Susceptibility of infrastructure to destruction	Is the infrastructure an "icon" - representing more	Are there "back up" facilities/equipment that will offset the infrastructure loss
Choose	than a physical structure, i.e. national monument (Notoriety) Locally Significant Non-Govt	
		50%
Blast Attack Concrete/Stone		
Interdependency		
Additional CI Sectors Affected by Loss of Asset		
Agriculture Dublic Health	Defense Industry ITransportation	Post Office, Shipping
☐ Food	ces 🔲 Information/Telecom 🔲 Bank Finance 🔽 Energy 👘 Chemical, Haza	rd Mat'l
New Save Delete Go	to Record Number Go	Refresh Record 29 of 37 🔣 🗲

CARVER² – Scoring Areas

- Criticality
 - Affected Users
 - Direct Economic Loss & Rebuild Cost
 - Potential Deaths
- Accessibility
- Recoverability
 - Time frame to fully recover
 - Also can choose irreplaceable

- Vulnerability
 - Biological/Chemical Effects
 - Blast (Physical) Effects
 - Includes strengths and weaknesses
- Espyability (icon status)
- Redundancy
- Interdependency
 - 14 infrastructure areas to consider

CARVER²–Results Reporting

• Total Score =

 $\Sigma_{i=1}^{3} \begin{array}{c} Criticality_{i} + Accessibility + Recoverability + \\ Vulnerability + Espyability - Redundancy \end{array}$

- Interdependencies not considered in scoring
- Numerous ways to group infrastructure elements and generate reports
 - Sector, sub-sector, interdependencies by sector, top 100 ranked assets, etc.

CARVER² – Pros & Cons

Advantages

- Uses standard database underpinnings
 - Batch element entry
 - Modification of scoring factors
 - Add/Remove other scoring elements
- Numerical scoring allows for comparison between dissimilar elements
- No technical training required

Disadvantages

- Requires knowledge (or educated guesses) of the condition of infrastructure to be evaluated
- No modeling capability interdependency function not very well integrated

CARVER² – Bridge Assessment

Iowa Interstate-35 Bridges North of

- I-35 between
 Des Moines and
 the Iowa Minnesota
 border.
- 30 bridges with 10,000 – 70,000 AADT.

CARVER² – Likelihood Assessment

- Basic Data Input:
 - Affected Users: Use Iowa DOT AADT Counts
 - Direct Economic Loss & Rebuild Cost
 - Economic Loss scaled by AADT to similar events (e.g., I-35W bridge collapse).
 - Rebuild Cost based on similar bridge projects.
 - Fatalities: Use headways and assume occupancies to determine maximum number of people on bridge.
 - Recoverability: Determine rebuild time based on similar bridge projects.
 - Redundancy: Assumed that local roads can handle 50% of highway capacity, no access to road network information.

CARVER² – Results

Categorical Bridge Resiliency Ratings

Individual Bridge Resiliency Scores Snapshot

IOWA STATE UNIVERSITY

CARVER² – Interpreting Results

- Bridges increase in score from north to south
 - Reflects higher traffic levels, greater potential for severe disruption
 - Magnitudes of changes are not linear (e.g., going from a score of 116 to 126 vs. 166 to 176)
- Effect of Redundancy: Need to balance additional traffic volume with additional capacity.
- Empirical justification for common-sense results.

CARVER² – Further Discussion

- Easy data input useful for non-technical assessments by government officials.
- Useful for Homeland Security-related assessments.
- Required data can easily be coded to draw from existing DOT and municipal asset databases as a way to generate snapshots of resiliency.

TRAGIS - Introduction

- Transportation Routing Analysis Geographic Information System
- Developed by Oak Ridge National Laboratory, U.S. Department of Energy
- Most efficient geographic routing for highway, rail, and water
- Replaces HIGHWAY, INTERLINE models
- Current Availability
 - Currently undergoing updates & minor redesign
 - Expected to be completed later this year
 - Routing engine currently unavailable for use

TRAGIS – Conceptual Design

- User interface, map files reside on local computer
- Routing calculations, large data files reside on server
- Batch TRAGIS used for multilink network analysis
- Output is compatible with GIS software, such as ArcGIS
- Routing also includes population densities, for risk assessment

TRAGIS – User Interface

🐃 WebTRAGIS Client Version: 3.3.1

Block Nodes/Links		Route Listings	Route Map		
Select Origin/Destination	Optional Hig	hway Routing Parameters	Optional Rail/Water Routing Parameters		
Mode © Highway C Railroad	C Water	C InterModal			
Origin			Calculate Route		
State Node Na	me		Alternative Route Penalty		
AL AR AZ BD		Selected Node Number	Enter the alternative route penalty to be applied to next alternative routing calculation.		
CA CO CT DC			Link Penalty (1-100)		
Destination					
State Node Nar	ne		Calculate Alternative Route		
AL AR AZ BD CA CO CT DC		Selected Node Number			
Route Type			Population Options		
Commercial CHF			C 400m Buffer Zone		
	iCQ + vada PP		 800m Buffer Zone 2500m Buffer Zone 		
			Help Client Software Parameters		

IOWA STATE UNIVERSITY Institute for Transportation

www.intrans.iastate.edu

_ 🗆 🗙

TRAGIS – Highway Routing

- Uses ORNL's National Highway Network
- 22,000 highway links, 16,000 nodes
- Includes all commercial nuclear plants, DOE sites, airports
- Minimize Impedance:

$$L = Min \sum_{i} (\alpha D_{i} + \beta T_{i}),$$

where

L = total impedance of a route;

 α = distance bias;

D_i = distance of segment i, miles;

 β = time bias;

- T_i = time required to travel along segment i, minutes.
- Highway Route Controlled Quantity (HRCQ), Waste Isolation Pilot Plant (WIPP) also available for hazardous waste routing
- Similar networks for rail and waterways

TRAGIS – Rail Routing

- Contains data on track ownership by Class I, regional, and short line railroads
- 28,000 links, 24,000 nodes
- Nuclear reactor, DOE sites, military bases also included
- Impedance (commercial)
- TRAGIS tries to keep movements with the same railroad, on mainline track
- HRCQ routes also available

$$L = Min\left\{\sum_{i} \left(\sigma_{i} f_{i} d_{i}\right) + \sum_{n} \left(T_{n}\right)\right\},\$$

$$\begin{split} L &= \text{total impedance of a route;}\\ \sigma_i &= \text{railroad factor for link i, with}\\ \sigma_i &= 0.8 \text{ for the originating railroad,}\\ \sigma_i &= 1.0 \text{ for all other railroads;} \end{split}$$
 $f_i &= \text{mainline classification factor for link i, with}\\ f_i &= 1.0 \text{ for A-mainline,}\\ f_i &= 1.2 \text{ for B-mainline,}\\ f_i &= 1.2 \text{ for B-mainline,}\\ f_i &= 1.9 \text{ for A-branchline,}\\ f_i &= 4.0 \text{ for B-branchline;} \end{aligned}$ $d_i &= \text{distance along link i, in miles;}\\ T_n &= \text{transfer penalty factor at node n, with}\\ T_n &= 151.0 \text{ for a terminal transfer,}\\ T_n &= 300.0 \text{ for a primary transfer,}\\ T_n &= 1500.0 \text{ for a detour transfer.} \end{split}$

TRAGIS – Water Routing

- Includes inland, coastal, and deep channel routes
- All ports, nuclear sites with barge facilities included
- Impedance
- Route accuracy needs
 be improved not as granular as highway and rail networks

$$L = Min\left\{\sum_{i} \left(f_{i}d_{i}\right) + \sum_{n}T_{n}\right\}$$

L = total impedance of a route; f_i = weighting factor for link i, with f_i = 1.0 for deep water links, and f_i = 1.5 for shallow water links; d_i = distance for link i, in miles; T_n = transfer penalty factor at node n.

TRAGIS – Node/Link Blocking

- TRAGIS allows the blocking of specific nodes, links, and even entire states
 - Useful for determining disruption impacts and for validating alternate routes in the event of construction, natural disasters, etc.
 - Additional restrictions available to route commercial vehicles
- With rail, railroad companies can also be blocked

TRAGIS – Population Density

- 400m, 800m, 2500m buffers available
 Default 800m (~ ¹/₂ mi) buffer
- Based on LandScan USA grid cell database and 2000 census data
- Results can be exported as ESRI shapefile, or transferred directly to RADTRAN
- Rural, Suburban, and Urban weighted data available

S. WebTRAGIS Client Version: 3.3.1

Selec	t Origin/Destir	nation	L	Op	otional	Highway Rou	ting Parameters	Optional	Rail/Wa	ter Routing P	arameters
Bloc	k Nodes/Link	s	ľ	Route Listings			<u> </u>	Route Map			
Print Save	ReCalc Route	Route Info	Stan Listir	dard ng		indard and p Listing	Detailed Listing	Population Data Listing	Map Info	Error Log	Clear Output
TRAGIS Routing Engine V	ersion 1.4.15	2000 Cer	sus Data								*
POPULATION DENSITY with FROM: DOE GERMANTOWN TO : DOE FORRESTAL	in 800 meter Bo HD DC	uffer Zone: a G									
>0.0 St Hiles 0 -22.	22.7 59.7 7 -59.7 -139	139 326 8 -326 -821 -18	21 186 61 -332	1 3326 6 -5815	5815 -9996	>9996					
DC 8.5 1.46 0.1 HD 19.4 0.00 0.0	2 0.15 0.00 6 0.19 0.27	0.18 0.02 0. 0.73 1.93 2.	37 D.6 47 4.5	8 0.72 9 5.05	1.83 2.71	2.97 1.43					
TOTALS 27.9 1.46 D.1 Percentages	8 0.34 0.27	0.91 1.95 2.	84 5.2	7 5.77	4.54	4.40					
5.23 D.6		3.26 6.98 10.	17 18.8	7 20.66	16.25	15.75					
BASIS: 2000 Census da											
RADTRAN Input Data HEIGHTED POPULATION People/sq. mi. People/sq. km.	RURAL SUBURBA 19.3 1714. 7.4 661.	.3 7523.0									
DISTANCE Hiles Kiloneters Percentages	2.3 11. 3.6 17. 8.1 39.	.7 23.7	TOTALS 27.9 44.9								
BASIS (people/sq mi.)	<139 139-332	26 >3326									
Population within 800 DC 73267 MD 65791	meter Buffer Zon	ne by State:									
Total Population within	800 meter Buff	fer Zone: 139058									_
<u> </u>								Help	Client	Software Pa	rameters

TRAGIS - Severity Assessment

- Use TRAGIS to determine alternative routings, assess travel time and distance impacts
- Generate estimates of users impacted by network interruptions
- Particularly useful for measuring impacts on commercial freight operations
- Scenarios for radioactive waste transport and disposal

TRAGIS - Network Disruption

Sample Corridor: Salt Lake City, Utah to Sacramento, California

Event: Disruption of Interstate 80 near Elko, Nevada

- Natural Disaster
- Terrorist Attack

Result: Traffic re-routed to U.S. Highways 50 & 93 south of Elko

TRAGIS - Results

CARVER² & TRAGIS Conclusions

- Transportation resiliency: Uncertainty and risk management.
- A few tools exist to define resiliency in a planning context.
 - CARVER²: Easy-to-use database tool to generate basic comparisons of transportation resiliency and investment prioritization.
 - TRAGIS: Transportation routing tool that can be used to assess the impact of network disruptions.
- The use of software tools must be based on a comprehensive and consistent framework of resiliency planning.

Links to Software

- CARVER²
 - <u>http://www.ni2cie.org/CARVER2.asp</u>
 - Must sign usage agreement to gain access
 - Available for all government, non-profit, and educational agencies
- TRAGIS
 - <u>https://tragis.ornl.gov/</u>
 - Available for all non-commercial users
 - Must register and receive download link

Resiliency in a Broader Context

- CARVER2 and TRAGIS are fine for evaluating a corridor, or compiling a static list of areas for focus.
- How to dynamically consider large-scale systems?
- How do other infrastructures, such as the energy network, relate to transportation resiliency?

NETSCORE21

- National Energy and Transportation
 Sustainability, Cost, and Resiliency for the 21st Century
- Identify long-term investment strategies for energy & transportation systems

NETSCORE Considerations

- Transportation
 - Highway,
 Conventional Rail,
 High-speed Rail,
 Waterway, Air
 - Passenger & Freight Movement
- Energy
 - Generation
 Technologies
 - Transmission & Storage

Data Development

- Passenger Data
 - National Household Travel Survey (NHTS)
 - Long-trips (>50 miles)
- Freight Data
 - Freight Analysis
 Framework v3
 - EIA Supplemental
 Information for Coal
 Commodities

- Operating & Investment Costs
 - Survey of State DOTs
 - Weighted according to Civil Works
 Construction Cost Index (CWCCI)
- Energy Use & Emissions
 - Energy Information
 Administration

Identifying Interdependencies

- Dual-derived demands
- Parallel paths to satisfy demand for electricity generation, transportation, or both.
- Effect on costs and prices of infrastructure investment
- Greenhouse gas emissions & pollutants
- Electric storage capability of PHEVs
- Competing/Complementary ROW needs

Project Deliverables

- NETSCORE21 will deliver a comprehensive vision of energy and transportation infrastructure investment policy.
- Netplan software
 - Multiobjective framework on pareto optimization front
 - Minimum cost solutions for transportation and energy investment
 - Able to model various scenarios that impact resiliency
Resiliency in NETSCORE21

- Components: Robustness, Flexibility
- Goal: build a more resilient infrastructure:
 - To accommodate future needs & demands
 - Increase reliability
 - Promote diversity of modes
 - Contribute to economic development

Resiliency in NETSCORE21

<u>Measure long-term resiliency</u> in terms of price stability to high-impact events - sudden loss of

- US Gulf natural gas supply,
- Powder River Basin coal,
- Middle Eastern oil,
- US uranium supply,

Nodal price at node k

Other Resiliency Metrics

Robustness	Flexibility
Percent of unused network capacity, by mode	Dynamic messaging signs per miles of roadway
Number of alternate interstate routes, by mode	On-time performance/amount of delay
Miles of infrastructure per capita, by mode	Percentage of total demand shipped
Average time to return to full capacity	Average dollar amount lost per day due to network disruptions
Maintenance spending per capita/mile	

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY Institute for Transportation

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY Institute for Transportation

IOWA STATE UNIVERSITY Institute for Transportation

Modeling Challenges

- How to account for value of time in passenger transportation?
- Difficulties of passenger vs. freight transportation
- NTHS long-trips data is outdated
- Specific issues with Netplan topology (e.g., multi-link trip modal selection)

An Iowa Perspective...

- Why does a national modeling framework like NETSCORE21 matter for Iowa?
 - Goal of a statewide model for Iowa
 - Growing importance of alternative energy and biofuels
 - Impact of hybrid-electric vehicles and plug-in hybrids
- How do we convert a national model for use at the state level?

Iowa Transportation Statistics

- Freight Data
 - Destinations: MO, MI, MD, MA, TN
 - Origins: MO, MN, MS, MT, MI

Cereal Grains Coal Gravel Other foodstuffs Base Metals Basic Chemicals Wood Products Nonmetallic Minerals Gasoline

Iowa Exports

Iowa Transportation Statistics

- Passenger Data
 - Popular destinations: NE, MN, IL, SD, MO
 - Popular origins: IL, MN, MO, TX, OH

Iowa Interstate Travel by Mode

IOWA STATE UNIVERSITY

Netplan Questions for Iowa

- What will be the effect on long distance travel mode choice and cost for expanded intercity passenger rail?
- What impact on the demand for energy commodities (and their load on the transportation network) will expanded wind energy have?
- How will increasing use of biofuels and electricity impact energy use and travel patterns for vehicles in Iowa?
- Other questions?

Next Steps

- Finish developing full model for passenger and freight travel
- Incorporate waterway shipping as a freight mode
- Explore scenarios relating to high speed rail and alternative energy use
- Begin developing statewide model...

Thank You!

IOWA STATE UNIVERSITY